6766
H. Matthews et al. / Bioorg. Med. Chem. Lett. 21 (2011) 6760–6766
Removal of the 6-chloro group was investigated with dechloro
References and notes
analogs; 55, 60 and 61. When compared with their 6-chloro coun-
terparts, the three dechloro compounds each showed significantly
reduced potency indicating that placing a group into the S1b
pocket is important. Other analogs substituted at the 6-position
with larger halogens (i.e., 57, 58) and aryl groups (i.e., 62, 63)
showed improved potency, with 57 and 63 being the most potent
compounds identified in the study (ꢀ6-fold increase in potency
relative to amiloride).
1. Duffy, M. J. Biotherapy 1992, 4, 45.
2. Dass, K.; Ahmad, A.; Azmi, A. S.; Sarkar, S. H.; Sarkar, F. H. Cancer Treat. Rev.
2008, 34, 122.
3. Duffy, M. J. Curr. Pharm. Des. 2004, 10, 39.
4. Rømer, J.; Nielsen, B. S.; Ploug, M. Curr. Pharm. Des. 2004, 10, 2359.
5. Nozaki, S.; Endo, Y.; Nakahara, H.; Yoshizawa, K.; Ohara, T.; Yamamoto, E.
Anticancer Drugs 2006, 17, 1109.
6. Tyndall, J. D. A.; Kelso, M. J.; Clingan, P.; Ranson, M. Recent Pat. Anti-Canc. 2008,
3, 1.
7. Ploug, M. Curr. Pharm. Des. 2003, 9, 1499.
Determining the uPA inhibitory potency of 46 and 47 was of
particular interest since these compounds are two of the most
potent NHE1 inhibitors known.17,29 The two compounds were
shown in the current work to provide twofold improvements
in potency relative to amiloride. While not large increases in po-
tency the result confirms that 5-substituted amiloride analogs
with very high potency against NHE1 are able to maintain po-
tency against uPA (relative to the unsubstituted amiloride)—an
important finding in the search for dual uPA/NHE1 inhibitors.
It also supports that the demonstrated antitumor/metastasis ef-
fects of 46 and 47 most likely arise through dual inhibition of
uPA and NHE1.
Analogs of 46 and 47 that retain the respective ethylisopropyl
and hexamethylene amines at C5 while replacing the 6-chloro
group with substituents that are able to make more favourable
contacts in the S1b site may lead to more potent uPA inhibitors
that retain potency against NHE1. It is worth noting that 6-Iodo-
46 and 6-Bromo-47 are 313- and 566-fold more potent NHE1
inhibitors than amiloride, respectively, and 1.40- and 1.08-fold
higher in potency than their 6-chloro counterparts 46 and 47.17
The current study has shown that converting amiloride to the 6-
Bromo or 6-Iodo derivatives enhances uPA inhibition. The com-
pounds 6-Iodo-46, 6-Bromo-47 and derivatives of 46 and 47 that
carry other C6-substituents are currently being examined in these
laboratories in pursuit of dual uPA/NHE1 inhibitors.
8. Croucher, D. R.; Saunders, D. N.; Lobov, S.; Ranson, M. Nat. Rev. Cancer 2008, 8,
535.
9. Look, M. P.; van Putten, W. L. J.; Duffy, M. J.; Harbeck, N.; Christensen, I. J.;
Thomssen, C.; Kates, R.; Spyratos, F.; Fernö, M.; Eppenberger-Castori, S.; Sweep,
C. G. J. F.; Ulm, K.; Peyrat, J.-P.; Martin, P.-M.; Magdelenat, H.; Brünner, N., et al
J. Natl. Cancer Inst. 2002, 94, 116.
10. Rockway, T. W.; Giranda, V. L. Curr. Pharm. Des. 2003, 9, 1483.
12. Rockway, T. W.; Nienaber, V.; Giranda, V. L. Curr. Pharm. Des. 2002, 8, 2541.
13. Sweetman, S. C., Ed. Martindale: the complete drug reference [online].
Pharmaceutical
Press:
London.
(accessed on 07 July 2011).
14. Vassalli, J.-D.; Belin, D. FEBS Lett. 1987, 214, 187.
15. Matthews, H.; Ranson, M.; Kelso, M. J. Int. J. Cancer 2011, 129, 2051.
16. Zeslawska, E.; Schweinitz, A.; Karcher, A.; Sondermann, P.; Sperl, S.;
Stürzebecher, J.; Jacob, U. J. Mol. Biol. 2000, 301, 465.
17. Kleyman, T. R.; Cragoe, E. J., Jr. J. Membr. Biol. 1988, 105, 1.
18. Wermuth, C. G. J. Med. Chem. 2004, 47, 1303.
19. Walker, J. B.; Walker, M. S. J. Biol. Chem. 1959, 234, 1481.
20. Showell, G. A.; Gibbons, T. L.; Kneen, C. O.; MacLeod, A. M.; Merchant, K.;
Saunders, J.; Freedman, S. B.; Patel, S.; Baker, R. J. Med. Chem. 1991, 34, 1086.
21. Cragoe, E., Jr.; Woltersdorf, O. W.; Bicking, J. B.; Kwong, S. F.; Jones, J. H. J. Med.
Chem. 1969, 10, 66.
22. Bicking, J. B.; Robb, C. M.; Kwong, S. F.; Cragoe, E. J., Jr. J. Med. Chem. 1967, 10,
598.
23. Chen, G. S.; Wilbur, J. K.; Barnes, C. L.; Glaser, R. J. Chem. Soc., Perkin Trans. 2
1995, 2311.
24. Lei, M.; Tao, X.-L.; Wang, Y.-G. Helv. Chim. Acta 2006, 89, 532.
25. Contreras, J.-M.; Rival, Y. M.; Chayer, S.; Bourguignon, J.-J.; Wermuth, C. G. J.
Med. Chem. 1999, 42, 730.
26. Fish, P. V.; Barber, C. G.; Brown, D. G.; Butt, R.; Collis, M. G.; Dickinson, R. P.;
Henry, B. T.; Horne, V. A.; Huggins, J. P.; King, E.; O’Gara, M.; McCleverty, D.;
McIntosh, F.; Phillips, C.; Webster, R. J. Med. Chem. 2007, 50, 2341.
27. Renatus, M.; Bode, W.; Huber, R.; Stürzebecher, J.; Stubbs, M. T. J. Med. Chem.
1998, 41, 5445.
Acknowledgments
28. Harguindey, S.; Arranz, J. L.; Wahl, M. L.; Orive, G.; Reshkin, S. J. Anticancer Res.
2009, 29, 2127.
29. Vigne, P.; Frelin, C.; Cragoe, E. J., Jr.; Lazdunski, M. Mol. Pharmacol. 1984, 25,
131.
This work was partially funded by a University of Wollongong
URC Small Grant (M. Kelso) and by the Otago Medical Research
Foundation (J. Tyndall). An Australian Postgraduate Award to
H. Matthews is gratefully acknowledged.
30. Arnaud, C. H. Chem. Eng. News 2011, 32.