Inorganic Chemistry
ARTICLE
(10) (a) Joseph, C. A.; Maroney, M. J. Chem. Commun. 2007,
3338–3349. (b) Pierce, B. S.; Gardner, J. D.; Bailey, L. J.; Brunold,
T. C.; Fox, B. G. Biochemistry 2007, 46, 8569–8578.
(34) (a) Schafer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992,
97, 2571–2577. (b) Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys.
1994, 100, 5829–5835.
(11) (a) Chen, J.; Li, W.; Wang, M. Z.; Zhu, G. Y.; Liu, D. Q.; Sun, F.;
Hao, N.; Li, X. M.; Rao, Z. H.; Zhang, X. C. Protein Sci. 2008,
17, 1362–1373. (b) Matera, I.; Ferraroni, M.; Burger, S.; Scozzafava,
A.; Stolz, A.; Briganti, F. J. Mol. Biol. 2008, 380, 856–868. (c) Hintner,
J. P.; Remtsma, T.; Stolz, A. J. Biol. Chem. 2004, 279, 37250–37260.
(12) Straganz, G. D.; Glieder, A.; Brecker, L.; Ribbons, D. W.;
Steiner, W. Biochem. J. 2003, 369, 573–581.
(35) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. (b) Becke,
A. D. J. Chem. Phys. 1993, 98, 1372–1377. (c) Lee, C. T.; Yang, W. T.;
Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
(36) (a) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys.
1998, 109, 8218–8224. (b) Casida, M. E.; Jamorski, C.; Casida, K. C.;
Salahub, D. R. J. Chem. Phys. 1998, 108, 4439–4449. (c) Bauernschmitt,
R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 454–464.
(13) Straganz, G. D.; Hofer, H.; Steiner, W.; Nidetzky, B. J. Am. Chem.
Soc. 2004, 126, 12202–12203.
(14) Straganz, G. D.; Nidetzky, B. J. Am. Chem. Soc. 2005, 127,
12306–12314.
(37) (a) Hirata, S.; Head-Gordon, M. Chem. Phys. Lett. 1999,
314, 291–299. (b) Hirata, S.; Head-Gordon, M. Chem. Phys. Lett.
1999, 302, 375–382.
(38) Laaksonen, L. J. Mol. Graphics 1992, 10, 33–34.
(15) (a) Straganz, G. D.; Diebold, A. R.; Egger, S.; Nidetzky, B.;
Solomon, E. I. Biochemistry 2010, 49, 996–1004. (b) Diebold, A. R.;
Straganz, G.; Solomon, E. I. J. Amer. Chem. 2011, 113, 15979–15991.
(16) Leitgeb, S.; Straganz, G. D.; Nidetzky, B. Biochem. J. 2009, 418,
403–411.
(17) (a) Pau, M. Y. M.; Davis, M. I.; Orville, A. M.; Lipscomb, J. D.;
Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 1944–1958. (b) Pau,
M. Y. M.; Lipscomb, J. D.; Solomon, E. I. Proc. Natl. Acad. Sci. U.S.A.
2007, 104, 18355–18362.
(18) Siewert, I.; Limberg, C. Angew. Chem., Int. Ed. 2008, 47, 7953–7956.
(19) Kitajima, N.; Amagai, H.; Tamura, N.; Ito, M.; Morooka, Y.;
Heerwegh, K.; Penicaud, A.; Mathur, R.; Reed, C. A.; Boyd, P. D. W.
Inorg. Chem. 1993, 32, 3583–3584.
(20) (a) Ogihara, T.; Hikichi, S.; Akita, M.; Moro-oka, Y. Inorg.
Chem. 1998, 37, 2614–2615. (b) Mukherjee, A.; Cranswick, M. A.;
Chakrabarti, M.; Paine, T. K.; Fujisawa, K.; Munck, E.; Que, L. Inorg.
Chem. 2010, 49, 3618–3628. (c) Paine, T. K.; Zheng, H.; Que, L., Jr.
Inorg. Chem. 2005, 44, 474–476.
(39) In the crystal structures of 1-acacF3 and [3-acacF3]OTf, the
acacF3 ligand is disordered because of interchange of the -CF3 and -
CH3 groups. This disorder is fairly minor for 1-acacF3, as the two
species exist in a 9:1 ratio; however, the problem is more severe for
[3-acacF3]OTf, where the relative occupancies are ∼2:1. Hence,
uncertainties in bond lengths and angles are greater for the latter
structure. The metric parameters reported in Tables 2 and 4 refer to
the high-occupancy species.
(40) (a) Reger, D. L.; Gardinier, J. R.; Elgin, J. D.; Smith, M. D.;
Hautot, D.; Long, G. J.; Grandjean, F. Inorg. Chem. 2006,
45, 8862–8875. (b) Reger, D. L.; Elgin, J. D.; Smith, M. D.; Grandjean,
F.; Rebbouh, L.; Long, G. J. Polyhedron 2006, 25, 2616–2622.
(c) Calogero, S.; Lobbia, G. G.; Cecchi, P.; Valle, G.; Friedl, J. Polyhedron
1994, 13, 87–97. (d) Oliver, J. D.; Mullica, D. F.; Hutchinson, B. B.;
Milligan, W. O. Inorg. Chem. 1980, 19, 165–169.
(41) The geometric parameter τ is defined as τ = |(α À β)|/60,
where α and β are the two basal angles in pseudo-square pyramidal
geometry (see ref 42). The τ-value is 0.0 in idealized square-planar
geometries and 1.0 in idealized trigonal bipyramidal geometries.
(42) Addison, A. W.; Rao, T. N.; Reedijk, J.; Vanrijn, J.; Verschoor,
G. C. J. Chem. Soc., Dalton Trans. 1984, 1349–1356.
(21) Mehn, M. P.; Fujisawa, K.; Hegg, E. L.; Que, L., Jr. J. Am. Chem.
Soc. 2003, 125, 7828–7842.
(22) (a) Brown, R. S.; Huguet, J. Can. J. Chem. 1980, 58, 889–901.
(b) Breslow, R.; Hunt, J. T.; Smiley, R.; Tarnowski, T. J. Am. Chem. Soc.
1983, 105, 5337–5342. (c) Slebocka-Tilk, H.; Cocho, J. L.; Frakman, Z.;
Brown, R. S. J. Am. Chem. Soc. 1984, 106, 2421–2431. (d) Allen, W. E.;
Sorrell, T. N. Inorg. Chem. 1997, 36, 1732–1734. (e) Kimblin, C.; Allen,
W. E.; Parkin, G. J. Chem. Soc., Chem. Commun. 1995, 1813–1815.
(f) Lynch, W. E.; D. M. Kurtz, J.; Wang, S.; Scott, R. A. J. Am. Chem. Soc.
1994, 116, 11030–11038. (g) Kunz, P. C.; Reiss, G. J.; Frank, W.; Klaui,
W. Eur. J. Inorg. Chem. 2003, 3945–3951.
(43) Equivalency between the pyrazole ligands was also found in 1H
NMR studies of five-coordinate (Ph2Tp)Fe(II)(α-keto carboxylate)
complexes. See ref 21.
(44) T1-values for triflate anions in the [3-acacX]OTf series were
found to lie near 0.5 s, which is shorter than the value of 4 s measured for
[NBu4]OTf. This result suggests that the triflate anions are weakly
associated with the [Fe(PhTIP)(acacX)]+ units in solution.
(45) Spin-polarization lowers the energies of the spin-up (α) Fe d
orbitals relative to their spin-down (β) counterparts, resulting in
substantial mixing of the former with ligand-based orbitals. For this
reason, only the spin-down Fe d-based MOs are shown in Figure 6.
(46) The gap between the acac HOMO and Fe d-orbital energies is
the smallest for the 5C model of [3-acac]+, since the acac ligand is
electron rich and the Fe-d-orbitals are relatively stabilized by the PhTIP
ligand and 5C environment.
(23) Kunz, P. C.; Klaui, W. Collect. Czech. Chem. Commun. 2007,
72, 492–502.
(24) (a) Malkhasian, A. Y. S.; Nikolovski, B.; Kucera, B. E.; Loloee,
R.; Chavez, F. A. Z. Anorg. Allg. Chem. 2007, 633, 1000–1005. (b) Batten,
M. P.; Canty, A. J.; Cavell, K. J.; Ruther, T.; Skelton, B. W.; White, A. H.
Acta. Crystallogr., Sect. C 2004, 60, M311–M313.
(25) Wu, F. J.; Kurtz, D. M. J. Am. Chem. Soc. 1989, 111, 6563–6572.
(26) (a) Wu, F. J.; Kurtz, D. M.; Hagen, K. S.; Nyman, P. D.; Debrunner,
P. G.; Vankai, V. A. Inorg. Chem. 1990, 29, 5174–5183. (b) Vankai, V. A.;
Newton, M. G.; Kurtz, D., Jr. Inorg. Chem. 1992, 31, 342–343.
(27) Diebold, A. R.; Neidig, M. L.; Moran, G. R.; Straganz, G. D.;
Solomon, E. I. Biochemistry 2010, 49, 6945–6952.
(28) Malbosc, F.; Chauby, V.; Serra-Le Berre, C.; Etienne, M.;
Daran, J. C.; Kalck, P. Eur. J. Inorg. Chem. 2001, 2689–2697.
(29) Kitajima, N.; Fujisawa, L.;Fujimoto, C.;Moro-oka, Y.; Hashimoto,
S.; Kitagawa, T.; Toriumi, K.; Tatsumi, K.; Nakamura, A. J. Am. Chem. Soc.
1992, 114, 1277–1291.
(30) Sheldrick, G. M. Acta. Crystallogr., Sect. A 2008, 64, 112–122.
(31) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.;
Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341.
(32) Neese, F. ORCA - an ab initio, Density Functional and Semi-
empirical Program Package, version 2.7; University of Bonn: Bonn,
Germany, 2009.
(33) (a) Becke, A. D. J. Chem. Phys. 1986, 84, 4524–4529. (b) Perdew,
J. P. Phys. Rev. B 1986, 33, 8822–8824.
11989
dx.doi.org/10.1021/ic201115s |Inorg. Chem. 2011, 50, 11978–11989