synthetic organic chemistry and asymmetric catalysis.
Therefore, the development of new chiral catalyst systems
for aza-Michael reaction is highly desired. Combining
chiral catalysts having different or similar properties is
currently an important and promising strategy for devel-
oping highly efficient catalytic transformations.7
Scheme 1
Cooperative combined catalyst systems inspired from
metalloenzymes with multiple cooperative noncovalent
interactions is currently a popular and important research
topic in asymmetric catalysis.7e Various bifunctional metal
and organocatalysts including the strategy of combined
catalyst systems, such as Lewis acid/Brønsted acid or base,8
Lewis acid/Lewis acid or base,9 Lewis base/Brønsted acid
or base,10 and combined transition metal/organocatalysis,11,12
have been developed to provide unique catalytic activities
during the past decade. Herein, we describe a different and
idiographic class of combination catalysts for aza-Michael
reaction, in which chiral Lewis base catalysis was assisted
by an achiral silicon-based Lewis acid catalyst.
On the basis of previous results (Scheme 1)13 and studies
on silicon-based Lewis acids14 and a pioneering report by
Scettri and Acocella et al.15 for the aza-Michael reaction of
aromatic amines to chalcones, we hypothesized that the
silicon-based bulky group acts not only as a simple moiety
to provide a steric bias in the transition state (Thorpeꢀ
Ingold effect)16 but also as a Lewis acid to electronically
modify the properties of the Lewis basic cinchona alkaloid.
To test this hypothesis involving silicon-based Lewis acid
(SLA) assisted Lewis base catalysis, we decided to search
for a new catalyst system.
(5) (a) Jiang, J.; Cai, Y.; Chen, W.; Lin, L.; Liu, X.; Feng, X. Chem.
Commun. 2011, 47, 4016–4018. (b) Phua, P. H.; Mathew, S. P.; White,
A. J. P.; Vries, J. G.; de Blackmond, D. G.; Hii, K. K. Chem.;Eur. J.
2007, 13, 4602–4613.
Among the Lewis acids screened in combination with
cinchonine for the aza-Michael reaction aniline to chal-
cone, a catalytic amount of iodotrimethylsilane (TMSI)
and trimethylsilyl acetate (TMSOAc) were promising. The
optimization studies were summarized in Table S1 (see
Supporting Infromation, SI). Initial investigations using
different silicon-based Lewis acids (SLAs) revealed that,
while most of bulky silicon Lewis acids provided poor
enantioselectivities, the combinational use of cinchonine
and TMSI or TMSOAc was uniquely efficient in affording
completed conversion with good enantioselectivity (80% ee)
of the aza-Michael adduct 3a at room temperature. When
the SLA used is trimethylsilyl trifluoromethanesulfonate
(TMSOTf) the decrease in the asymmetric induction
(28% ee) may be due to the unfavorable functionality of
the stronger Lewis acidity. Efforts to optimize this result
led to the following observations. (1) Enantioselectivities
and conversions were independent of the silicon-based
Lewis acid catalyst loading (from 10 to 20 mol % of
TMSI). (2) Best results were obtained under solvent-free
conditions. Similar enantioselectivities were obtained in
hexamethyldisiloxane (79% ee) but at the expense of yields
for the same time. Other solvents, such as diethyl ether, resul-
ted in poorer enantioselectivity and conversion (62% ee,
91% yield). (3) Interestingly, an increase or decrease in the
reaction temperature was detrimental or unprofitable to
enantioselectivities.
(6) Selected examples: (a) Enders, D.; Wang, C.; Liebich, J. X.
Chem.;Eur. J. 2009, 15, 11058–11076. (b) Ying, Y. C.; Kim, H.; Hong,
J. Y. Org. Lett. 2011, 13, 796–799. (c) Lykke, L.; Monge, D.; Nielsen, M.;
Jørgensen, K. A. Chem.;Eur. J. 2010, 16, 13330–13334. (d) Cai, Q. A.;
Zheng, C.; You, S. L. Angew. Chem., Int. Ed. 2010, 49, 8668–8669.
(e)Wong, C. T. Tetrahedron 2010, 42, 8267–8272. (f)Enders, D.;Liebich,
J. X.; Raabe, G. Chem.;Eur. J. 2010, 16, 9763–9766. (g) Lu, X. J.;
Deng, L. Angew. Chem., Int. Ed. 2008, 47, 7710–7713. (h) Chen, Y. K.;
Yoshida, M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128,
9328–9329.
(7) (a) Shibasaki, M.; Matsunaga, S.; Kumagai, N. Synlett 2008,
1583–1602. (b) Ma, J. A.; Cahard, D. Angew. Chem., Int. Ed. 2004, 43,
4566–4583. (c) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobsen,
E. N. Science 2010, 327, 986–990. (d) Zhou, J. Chem.;Asian J. 2010, 4,
422–434. (7e) Deuss, P. J.; Heeten, R.; den Laan, W.; Kamer, P. C. J.
Chem.;Eur. J. 2011, 17, 4680–4698.
(8) (a) Yamamoto, H.; Futasugi, K. Angew. Chem., Int. Ed. 2005, 44,
1924–1942. (b) Cheon, C. H.; Imahori, T.; Yamamoto, H. Chem.
Commun. 2010, 46, 6980–6982. (c) Yazaki, R.; Kumagai, N.; Shibasaki,
M. J. Am. Chem. Soc. 2010, 132, 5522–5531. (d) Yang, T.; Ferrali, A.;
Sladojevich, F.; Campbell, L.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131,
9140–9141. (e) Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102,
2187–2210.
(9) (a) Paull, D. H.; Abraham, C. J.; Scerba, M. T.; Alden-Danforth,
E.; Leckka, T. Acc. Chem. Res. 2008, 41, 655–663. (b) Denmark, S. E.;
Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560–1638. (c) Tiseni,
P. S.; Peters, R. Org. Lett. 2008, 10, 2019–2022. (d) Kanai, M.; Kato, N.;
Ichikawa, E.; Shibasaki, M. Synlett 2005, 1491–1508.
(10) (a) Sakakura, A.; Ohkubo, T.; Yamashita, R.; Akakura, M.;
Ishihara, K. Org. Lett. 2011, 13, 892–895. (b) Morimoto, H.; Yoshino,
T.; Yukawa, T.; Lu, G.; Matsunaga, S.; Shibasaki, M. Angew. Chem.,
Int. Ed. 2008, 47, 9125–9129.
(11) Recent Reviews:(a) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009,
38, 2745–2755. (b) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2999–
3025.
(12) (a) Yang, H. M.; Li, L.; Jiang, K. Z.; Lai, G. Q.; Xu, L. W.
Tetrahedron 2010, 66, 9708–9713. (b) Cai, Y. F.; Yang, H. M.; Li, L.;
Jiang, K. Z.; Lai, G. Q.; Jiang, J. X.; Xu, L. W. Eur. J. Org. Chem. 2010,
4986–4990.
(13) Cai, Y. F.; Luo, M. X.; Yang, K. F.; Lai, G. Q.; Jiang, J. X.; Xu,
L. W. Chirality 2011, 23, 397–403.
In this reaction, significant variations in the stereoselec-
tivity (0ꢀ77% ee) were observed depending on the nature
of Lewis acids. Among the metallic Lewis acids screened,
(14) (a) Mathieu, B.; Fays, L.; de Ghosez, L. Tetrahedron Lett. 2000,
41, 9561–9564. (b) Notte, G. T.; Leighton, J. L. J. Am. Chem. Soc. 2008,
130, 6676–6677. (c) Yanai, H.; Takahashi, A.; Taguchi, T. Chem.
Commun. 2010, 46, 8727–8730. (d) Najmedin, N.; Baghi, R.; Ghafuri,
H.; Bolourtchian, M.; Hashemi, M. Synlett 2010, 379–382. (e) Leighton,
J. L. Aldrichchimica Acta 2010, 43, 3–12. (f) Kobayashi, S.; Kiyohara,
H.; Yamaguchi, M. J. Am. Chem. Soc. 2011, 133, 708–711.
(15) Scettri, A.; Massa, A.; Palombi, L.; Villano, R.; Acocella, M. R.
Tetrahedron: Asymmetry 2008, 19, 2149–2152.
(16) ThorpeꢀIngold effect: (a) Beesley, R. M.; Ingold, C. K.; Thorpe,
J. F. J. Chem. Soc., Trans 1915, 1080–1106. (b) Bachrach, S. M. J. Org.
Chem. 2008, 73, 2466–2468.
Org. Lett., Vol. 13, No. 24, 2011
6509