6480
S. G. Davies et al. / Tetrahedron Letters 52 (2011) 6477–6480
8. (a) Matkhalikova, S. F.; Malikov, V. M.; Yunusov, S. Yu. Khim. Prir. Soedin. 1969,
5, 30; (b) Matkhalikova, C. F.; Malikov, V. M.; Yunusov, S. Y. Khim. Prir. Soedin.
1969, 5, 606; (c) Matkhalikova, S. F.; Malikov, V. M.; Yunusov, S. Yu. Khim. Prir.
Soedin. 1969, 5, 607; (d) Yagudaev, M. R.; Matkhalikova, S. F.; Malikov, V. M.;
Yusunov, S. Y. Khim. Prir. Soedin. 1972, 495; (e) Shibano, M.; Tsukamoto, D.;
Masuda, A.; Tanaka, Y.; Kusano, G. Chem. Pharm. Bull. 2001, 49, 1362.
9. Iida, H.; Yamazaki, N.; Kibayashi, C.; Nagase, H. Tetrahedron Lett. 1986, 27, 5393.
10. Chandrasekhar, S.; Saritha, B.; Jagadeshwar, V.; Prakash, S. J. Tetrahedron:
Asymmetry 2006, 17, 1380.
11. Reddy, J. S.; Rao, B. V. J. Org. Chem. 2007, 72, 2224.
12. Wang, C. J.; Calabrese, J. C. J. Org. Chem. 1991, 56, 4341.
13. Haddad, M.; Larcheveque, M. Synlett 2003, 274.
14. Yoda, H.; Nakajima, T.; Takabe, K. Tetrahedron Lett. 1996, 37, 5531.
15. Goti, A.; Cicchi, S.; Mannucci, V.; Cardona, F.; Guarna, F.; Merino, P.; Tejero, T.
Org. Lett. 2003, 5, 4235.
16. Oliveira, D. F.; Severino, E. A.; Correia, C. R. D. Tetrahedron Lett. 1999, 40, 2083.
17. Severino, E. A.; Correia, C. R. D. Org. Lett. 2000, 2, 3039.
NMR nOe analysis. The appearance of regioisomeric product 27
lends support to the original hypothesis that a mechanism involv-
ing neighbouring group participation via a phenonium ion inter-
mediate 25 was occurring and also giving rise to retention of
configuration upon attack of the acetate anion at C(3) to give 26.
Subsequently, treating the 75:25 mixture of 26 and 27 with meth-
anolic HCl at 50 °C for 48 h was found to give (ꢀ)-codonopsinine 1
in 30% isolated yield (2 steps) and >99:1 dr, thus completing the to-
tal asymmetric synthesis of this pyrrolidine natural product
(Scheme 4).
The spectroscopic data for the synthetic sample of (ꢀ)-codon-
opsinine 129 were found to be in excellent agreement with those
corresponding to the sample isolated from the natural source
{½a 2D0
ꢃ
ꢀ9.1 (c 0.1 in MeOH); Lit.8b
½
a 2D0
ꢃ
ꢀ8.8 (c 0.1 in MeOH)} and
18. Kotland, A.; Accadbled, F.; Robeyns, K.; Behr, J. J. Org. Chem. 2011, 76, 4094.
19. Chowdhury, M. A.; Reissig, H.-U. Synlett 2006, 2383.
other samples obtained by total synthesis.30 Furthermore, recrys-
tallisation of (ꢀ)-codonopsinine 1 from pyridine produced colour-
less plates which were subjected to X-ray diffraction analysis,26
unambiguously confirming the relative configuration within
codonopsinine (Fig. 4).
20. Uraguchi, D.; Nakamura, S.; Ooi, T. Angew. Chem., Int. Ed. 2010, 49, 7562.
21. (a) Davies, S. G.; Nicholson, R. L.; Price, P. D.; Roberts, P. M.; Smith, A. D. Synlett
2004, 901; (b) Davies, S. G.; Nicholson, R. L.; Price, P. D.; Roberts, P. M.; Savory,
E. D.; Smith, A. D.; Thomson, J. E. Tetrahedron: Asymmetry 2009, 20, 756.
22. (a) Davies, S. G.; Hughes, D. G.; Price, P. D.; Roberts, P. M.; Russell, A. J.; Smith,
A. D.; Thomson, J. E.; Williams, O. M. H. Synlett 2010, 567; (b) Davies, S. G.;
Fletcher, A. M.; Hughes, D. G.; Lee, J. A.; Price, P. D.; Roberts, P. M.; Russell, A. J.;
Smith, A. D.; Thomson, J. E.; Williams, O. M. H. Tetrahedron, 2011. doi:10.1016/
In summary, ring-closing iodoamination of a homoallylic amine,
with concomitant N-debenzylation, was used to generate a 3-
iodopyrrolidine in >99:1 dr. Subsequent elaboration upon
treatment with AgOAc in AcOH, followed by global deprotection
gave (ꢀ)-codonopsinine (in >99:1 dr) in 7 steps from commercially
available tert-butyl crotonate in 5% overall yield. Furthermore, the
single crystal X-ray diffraction structure of (ꢀ)-codonopsinine is,
for the first time, disclosed herein.
23. Brock, E. A.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Thomson, J. E. Org. Lett. 2011,
13, 1594.
24. For selected examples, see: (a) Bunnage, M. E.; Burke, A. J.; Davies, S. G.;
Millican, N. L.; Nicholson, R. L.; Roberts, P. M.; Smith, A. D. Org. Biomol. Chem.
2003, 1, 3708; (b) Abraham, E.; Candela-Lena, J. I.; Davies, S. G.; Georgiou, M.;
Nicholson, R. L.; Roberts, P. M.; Russell, A. J.; Sánchez-Fernández, E. M.; Smith,
A. D.; Thomson, J. E. Tetrahedron: Asymmetry 2007, 18, 2510; (c) Abraham, E.;
Davies, S. G.; Millican, N. L.; Nicholson, R. L.; Roberts, P. M.; Smith, A. D. Org.
Biomol. Chem. 2008, 6, 1655; (d) Abraham, E.; Brock, E. A.; Candela-Lena, J. I.;
Davies, S. G.; Georgiou, M.; Nicholson, R. L.; Perkins, J. H.; Roberts, P. M.;
Russell, A. J.; Sánchez-Fernández, E. M.; Scott, P. M.; Smith, A. D.; Thomson, J. E.
Org. Biomol. Chem. 2008, 6, 1665; (e) Davies, S. G.; Nicholson, R. L.; Price, P. D.;
Roberts, P. M.; Russell, A. J.; Savory, E. D.; Smith, A. D.; Thomson, J. E.
Tetrahedron: Asymmetry 2009, 20, 758.
Supplementary data
Supplementary data associated with this article can be found, in
25. For a review, see: Davies, S. G.; Smith, A. D.; Price, P. D. Tetrahedron: Asymmetry
2005, 16, 2833.
References and notes
26. Crystallographic data (excluding structure factors) for compounds 17ꢂHCl and
1 have been deposited with the Cambridge Crystallographic Data Centre as
supplementary publication numbers CCDC 840035 and 840036, respectively.
Copies of these data can be obtained free of charge from The Cambridge
27. Flack, H. D. Acta Crystallogr. A 1983, 39, 876.
1. (a) Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 2, 3679; (b) Johnson, T. A.;
Curtis, M. D.; Beak, P. J. Am. Chem. Soc. 2001, 123, 1004.
2. (a) Pinder, A. R. Nat. Prod. Rep. 1989, 6, 67; (b) Pinder, A. R. Nat. Prod. Rep. 1989,
6, 515; (c) Pinder, A. R. Nat. Prod. Rep. 1990, 7, 447; (d) Pinder, A. R. Nat. Prod.
Rep. 1992, 9, 491; (e) Plunkett, A. O. Nat. Prod. Rep. 1992, 11, 581.
3. Seigler, D. S. Plant Secondary Metabolism, 1st ed.; Springer, 2001.
4. (a) Toyao, A.; Tamura, O.; Takagi, H.; Ishibashi, H. Synlett 2003, 35; (b)
Chandrasekhar, S.; Jagadeshwar, V.; Prakash, S. J. Tetrahedron Lett. 2005, 46,
3127.
5. El Ashry, E. S. H.; Rashed, N.; Shobier, A. H. S. Pharmazie 2000, 55, 331.
6. (a) Denmark, S. E.; Marcin, L. R. J. Org. Chem. 1995, 60, 3221; (b) Enders, D.;
Thiebes, T. Pure Appl. Chem. 2001, 73, 573; (c) Robins, D. J.; Sainsbury, M. Rodd’s
Chemistry of Carbon Compounds, 2nd ed.; 1997; 4 (Part B), pp 1–19; (d) Pandey,
G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484; (e) Huang, P.-Q. Synlett
2006, 1133; (f) Husineca, S.; Savic, V. Tetrahedron: Asymmetry 2005, 16, 2047;
(g) Pyne, S. G.; Davis, A. S.; Gates, N. J.; Hartley, J. P.; Lindsay, K. B.; Machan, T.;
Tang, M. Synlett 2004, 2670; (h) Felpin, F.-X.; Lebreton, J. Eur. J. Org. Chem. 2003,
3693; (i) Brasholz, M.; Reissig, H.-U.; Zimmer, R. Acc. Chem. Res. 2009, 42, 45.
7. The synthesis of C2-symmetric 2,5-disubstituted pyrrolidine derivatives is a
popular area of research for organic chemists as these compounds are also
especially useful as chiral auxiliaries for asymmetric synthesis, for instance,
see: (a) Shi, M.; Satoh, Y.; Masaki, Y. J. Chem. Soc., Perkin Trans. 1 1998, 2547; (b)
Blum, A.; Diederich, W. E. Curr. Org. Synth. 2009, 6, 38.
28. Flack, H. D.; Bernardinelli, G. J. Appl. Crystallogr. 2000, 33, 1143.
29. Data for (R,R,R,R)-N(1)-methyl-2-(40-methoxyphenyl)-3-hydroxy-4-hydroxy-
5-methylpyrrolidine [(ꢀ)-codonopsinine] 1: mp 147–150 °C; ½a D20
ꢀ9.1 (c 0.1
ꢃ
in MeOH); dH (400 MHz, pyridine-d5) 1.34 (3H, d, J 6.8, C(5)Me), 2.23 (3H, s,
NMe), 3.64 (3H, s, OMe), 3.67–3.72 (1H, m, C(5)H), 4.09 (1H, d, J 6.7, C(2)H), 4.39
(1H, dd, J 4.4, 3.8, C(4)H), 4.65 (1H, dd, J 6.7, 4.4, C(3)H), 5.25 (2H, br s, OH), 6.95
(2H, d, J 8.6, C(30)H, C(50)H), 7.31 (2H, d, J 8.6, C(20)H, C(60)H); dC (100 MHz,
pyridine-d5) 14.3 (C(5)Me), 35.2 (NMe), 55.5 (OMe), 65.7 (C(5)), 74.6 (C(2)), 85.6
(C(4)), 88.0 (C(3)), 114.7 (C(30), C(50)), 130.2 (C(20), C(60)), 135.4 (C(10)), 160.1
(C(40)); m/z (ESI+) 238 ([M+H]+, 100%); HRMS (ESI+) C13H20NOþ3 ([M+H]+)
requires 238.1438; found 238.1437.
30. Ref. 4a: ½a 2D8
ꢃ
ꢀ13.2 (c 0.3 in MeOH); Ref. 4b: ½a D20
ꢀ8.8 (c 0.1 in MeOH); Ref. 10:
ꢃ
½
a 2D5
ꢃ
ꢀ12.4 (c 0.4 in MeOH); Ref. 11: ½a D34
ꢃ
ꢀ8.7 (c 0.3 in MeOH); Ref. 13: ½a D20
ꢃ
ꢀ10.5 (c 1.1 in MeOH); Ref. 15: ½a D20
ꢀ7.2 (c 0.1 in MeOH); Ref. 17: mp 153–
ꢃ
155 °C; ½a 2D0
ꢃ
ꢀ7.3 (c 0.2 in MeOH); Ref. 20: ½a D20
ꢀ13.1 (c 1.3 in MeOH).
ꢃ