(3H, s, NCH3); 5.06 (2H, s, CH2); 7.25–7.43 (5H, m, H Ph); 9.81 (1H, s H-5'). 13C NMR spectrum, δ, ppm: 39.5,
45.8, 126.1, 128.08, 128.12, 129.0, 136.2, 153.7, 159.9, 171.0, 171.4. Mass spectrum, m/z: 322 [M+1]+. Found,
%: C 48.67; H 3.51; N 13.21; S 30.07. C13H11N3OS3. Calculated, %: C 48.57; H 3.45; N 13.07; S 29.93.
(4E)-4-(3H-1,2,4-Dithiazol-3-ylidene)-3-methyl-1-phenyl-5-thioxoimidazolidin-2-one (6b). Yield
1
35%; mp 219–221°C. Rf 0.63. IR spectrum, ν, cm–1: 1309, 1399, 1421, 1488, 1565, 1717 (C=O). H NMR
spectrum, δ, ppm: 3.73 (3H, s, NCH3); 7.45–7.58 (5H, m, H Ph); 9.85 (1H, s, H-5'). 13C NMR spectrum, δ, ppm:
31.5, 116.1, 127.6, 128.5, 130.5, 137.1, 153.8, 160.1, 171.2, 171.5. Mass spectrum, m/z: 308 [M+1]+. Found, %:
C 46.72; H 2.84; N 13.56; S 31.45. C12H9N3OS3. Calculated, %: C 46.88; H 2.95; N 13.67; S 31.29.
(4E)-4-(3H-1,2,4-Dithiazol-3-yliden)-3-methyl-1-(4-methylphenyl)-5-thioxoimidazolidin-2-one (6c).
Yield 37%; mp 221–223°C. Rf 0.65. IR spectrum, ν, cm–1: 1403, 1421, 1488, 1518, 1568, 1716 (C=O). 1H NMR
spectrum, δ, ppm: 2.40 (3H, s, CH3); 3.73 (3H, s, NCH3); 7.29 (4H, s, H Ar); 9.86 (1H, s, H-5'). 13C NMR
spectrum, δ, ppm: 39.4, 39.5, 126.6, 127.8, 130.3, 132.1, 139.0, 153.3, 160.3, 171.2, 171.3. Mass spectrum, m/z:
322 [M+1]+. Found, %: C 48.61; H 3.29; N 13.15; S 29.84. C13H11N3OS3. Calculated, %: C 48.57; H 3.45;
N 13.07; S 29.92.
X-Ray structural study of a monocrystal of compound 6a with dimensions 0.06×0.22×0.28 mm at
room temperature using a Bruker Apex II diffractometer (λ MoKα radiation, graphite monochromator,
θ
max 26.31°, segment of the sphere –8 ≤ h ≤ 13, –9 ≤ k ≤ 8, –21 ≤ l ≤ 22). 7857 reflections were collected of
which 2809 were independent (average R factor 0.0367). Absorptions were correlated using the SADABS
program using the multiscanning method (Tmin/Tmax = 0.8659/0.9689). The crystal of compound 6a was
monoclinic, space group P21/c, a = 10.5041(8), b = 7.2532(4), c = 18.3171(10) Ǻ, β = 93.701(4)°,
V = 1392.64(15) Ǻ3, Z = 4, dc = 1.533, μ = 0.530 mm–1, F(000) 664. The structure was solved by direct method
with refinement by least squares analysis in the full matrix anisotropic approximation using the SHELXS97 and
SHELXL97 programs [9, 10]. Hydrogen atoms were found and refined isotropically. In the refinement 1980
reflections with I > 2σ(I) were used, 225 refined parameters, number of reflections per parameter 8.8, the
weighting scheme used was ω = 1[σ2(Fo2) + (0.0289P)2 + 0.5289P] where P = (Fo2 + 2Fc2)/3, the ratio of the
maximal (average) shift to the error in the last cycle 0.041(0.002). The final values of the divergence factors for
reflections with I > 2σ(I), R1(F) = 0.0384, wR2(F2) = 0.0743, R1(F) = 0.0694, wR2(F2) = 0.0867, GOOF 1.02 for
all independent reflections. The residual electron density from the difference Fourier after the last cycle of
refinement were 0.23 and –0.25e/Ǻ3. The results of the X-ray crystallographic study have been deposited in the
Cambridge Crystallographic Data Center (deposit CCDC 805442).
REFERENCES
1.
S. A. Chumachenko, O. V. Shablykin, A. P. Kozachenko, T. V. Osadchuk, and V. S. Brovarets, Khim.
Geterotsikl. Soedin., 410 (2011). [Chem. Heterocycl. Comp., 47, 410 (2011)].
E. Ziegler, C. Mayer, and J. G. Zwainz, Z. Naturforsch., 30b, 760 (1975).
L. Skrzypek, Heterocycles, 51, 2111 (1999).
J. P. Declercq, G. Germain, M. van Meerssche, J. A. Falmagne, S. D. Carter, and L. Ghosez, Bull Soc.
Chim. Belge, 89, 661 (1980).
2.
3.
4.
5.
6.
H. Graubaum, G. Lutze, and M. Ramm, Phosphorus, Sulfur, Silicon, Relat. Elem., 84, 83 (1993).
T. Raj, R. K. Bhatia, R. K. Sharma, V. Gupta, D. Sharma, and M. P. S. Ishar, Eur. J. Med. Chem., 44,
3209 (2009).
7.
T. Raj, R. K. Bhatia, A. Kapur, M. Sharma, A. K. Saxena, and M. P. S. Ishar, Eur. J. Med. Chem., 45,
790 (2010).
8.
9.
10.
A. M. Sh. El-Sharief and Z. Moussa, Eur. J. Med. Chem., 44, 4315 (2009).
G. M. Sheldrick, SHELXS97. Program for Crystal Structure Solution, Göttingen, Germany, 1997.
G. M. Sheldrick, SHELXL97. Program for Crystal Structures Refinement, Göttingen, Germany, 1997.
810