2 (a) M. A. Baldo, C. Adachi and S. R. Forrest, Phys. Rev. B: Condens.
Matter, 2000, 62, 10967; (b) S.-J. Su, H. Sasabe, T. I. Takeda and
J. Kido, Chem. Mater., 2008, 20, 1691.
3 (a) M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and
S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4; (b) M. H. Lu,
M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack
and J. J. Brown, Appl. Phys. Lett., 2002, 81, 3921.
4 (a) G. Hughes and M. R. Bryce, J. Mater. Chem., 2005, 15, 94; (b)
C. T. Chen, Y. Wei, J. S. Lin, M. V. R. K. Moturu, W. S. Chao,
Y. T. Tao and C. H. Chien, J. Am. Chem. Soc., 2006, 128, 10992;
(c) N. J. Lundin, A. G. Blackman, K. C. Gordon and D. L. Officer,
Angew. Chem., Int. Ed., 2006, 45, 2582.
5 (a) X. Cai, A. B. Padmaperuma, L. S. Sapochak, P. A. Vecchi and
P. E. Burrows, Appl. Phys. Lett., 2008, 92, 083308; (b) Y. Tao,
Q. Wang, C. Yang, Q. Wang, Z. Zhang, T. Zou, J. Qin and D. Ma,
Angew. Chem., Int. Ed., 2008, 47, 8104; (c) Z. Ge, T. Hayakawa,
S. Ando, M. Ueda, T. Akiike, H. Miyamoto, T. Kajita and
M.-A. Kakimoto, Adv. Funct. Mater., 2008, 18, 584; (d) Z. Ge,
T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto,
T. Kajita and M.-A. Kakimoto, Org. Lett., 2008, 10, 421; (e)
M. Y. Lai, C. H. Chen, W. S. Huang, J. T. Lin, T. H. Ke,
L. Y. Chen, M. H. Tsai and C. C. Wu, Angew. Chem., Int. Ed.,
2008, 47, 581.
6 (a) H.-F. Chen, S.-J. Yang, Z.-H. Tsai, W.-Y. Hung, T.-C. Wang and
K.-T. Wong, J. Mater. Chem., 2009, 19, 8112; (b) Z. Ge,
T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto,
T. Kajita and M. Kakimoto, Org. Lett., 2008, 10, 421.
7 Y. Li, M. K. Fung, Z. Xie, S.-T. Lee, L.-S. Hung and J. Shi, Adv.
Mater., 2002, 14, 1317.
8 C.-H. Chen, W.-S. Huang, M.-Y. Lai, W.-C. Tsao, J. T. Lin,
Y.-H. Wu, T.-H. Ke, L.-Y. Chen and C.-C. Wu, Adv. Funct.
Mater., 2009, 19, 2661.
9 S. Gong, Y. Zhao, C. Yang, C. Zhong, J. Qin and D. Ma, J. Phys.
Chem. C, 2010, 114, 5193.
10 S. Takizawa, V. A. Montes and P. Anzenbacher, Jr, Chem. Mater.,
2009, 21, 2452.
11 M.-H. Tsai, H.-W. Lin, H.-C. Su, T.-H. Ke, C. Wu, F.-C. Fang,
Y.-L. Liao, K.-T. Wong and C.-I. Wu, Adv. Mater., 2006, 18,
1216.
12 G. Zhou, W.-Y. Wong, B. Yao, Z. Xie and L. Wang, Angew. Chem.,
Int. Ed., 2007, 46, 1149.
13 C.-L. Ho, W.-Y. Wong, Z.-Q. Gao, C.-H. Chen, K.-W. Cheah,
B. Yao, Z. Xie, Q. Wang, D. Ma, L. Wang, X.-M. Yu, H.-S. Kwok
and Z. Lin, Adv. Funct. Mater., 2008, 18, 319.
14 S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki and F. Sato, Appl.
Phys. Lett., 2003, 83, 569.
15 (a) V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander,
P. I. Djurovich, B. W. D’Andrade, C. Adachi, S. R. Forrest and
M. E. Thompson, New J. Chem., 2002, 26, 1171; (b)
R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong,
J. J. Brown, S. Garon and M. E. Thompson, Appl. Phys. Lett.,
2003, 82, 2422.
16 H.-H. Chou, H.-H. Shih and C.-H. Cheng, J. Mater. Chem., 2010, 20,
798.
17 D. Hu, P. Lu, C. Wang, H. Liu, H. Wang, Z. Wang, T. Fei, X. Gu and
Y. Ma, J. Mater. Chem., 2009, 19, 6143.
This device structure is similar to that of device A, except for the
presence of TAZ as the ETL. The triplet energies of DTAF (2.87
eV)29 and TAZ (2.70 eV)31 were sufficiently high to prevent any
possible luminescence quenching by the carrier-transporting
layers and to confine the triplet excitons in the EML. Fig. 7(a)
displays the I–V–L characteristics of these blue light-emitting
devices. The CBzNBI-based device C3 exhibited significantly
lower turn-on and operation voltages than did the mCPNBI-
based device D3. We attribute the enhanced device current to the
facilitation of hole injection when using CBzNBI as the host
material, as revealed by its relatively high HOMO energy level and
hole transporting properties (Fig. 5(a)). Table 2 and Fig. 7(b)
reveal that the mCPNBI-based device D3 exhibited maximum
efficiencies (16.3%, 35.7 cd Aꢀ1, 23.3 ml Wꢀ1) that were superior to
those of the CBzNBI-based device C3 (13.5%, 28.7 cd Aꢀ1, 25.8 ml
Wꢀ1), presumably because mCPNBI possesses relatively poor
hole injection and transport behavior, leading to a balanced hole
and electron in the EML. These values are comparable to those
that we reported previously for a device based on CzSi,11 con-
firming the suitability of using N-connected bipolar hosts for the
blue phosphor.
Conclusions
We have synthesized four bipolar hosts, CbzCBI, mCPCBI,
CbzNBI, and mCPNBI, containing hole-transporting carbazole
and electron-transporting benzimidazole moieties, for the reali-
zation of highly efficient green and blue electrophosphorescent
devices. Different linking topologies between the benzimidazole
group (C- or N-connectivity) and the carbazole donor resulted in
different effective conjugation lengths and different excited-state
solvent relaxation processes. Each of the bipolar hosts exhibited
high morphological and thermal stability, suitable energy levels,
and balanced electron/hole transporting characteristics, all of
which are necessary for high-performance PhOLEDs. A green-
phosphorescent device incorporating CbzCBI as host doped with
(PBi)2Ir(acac) achieved a maximum external quantum efficiency,
current efficiency, and power efficiency of 20.1%, 70.4 cd Aꢀ1
and 63.2 lm Wꢀ1
respectively (device A2). The bipolar
,
,
compounds featuring N-connected benzimidazole moieties
(CbzNBI, mCPNBI) possessed the higher triplet energies
required to host blue phosphors. A blue PhOLED device (device
D3) incorporating mCPNBI as the host achieved a maximum
external quantum efficiency, current efficiency, and power effi-
ciency of 16.3%, 35.7 cd Aꢀ1, and 23.3 lm Wꢀ1, respectively. Our
results suggest that varying the molecular linking topology is
a possible strategy toward designing useful bipolar host mate-
rials; we hope that this approach will trigger the molecular design
of novel host materials for highly efficient PhOLEDs.
18 N. Chopra, J. Lee, Y. Zheng, S. H. Eom, J. Xue and F. So, Appl. Phys.
Lett., 2008, 93, 143307.
19 M.-H. Tsai, Y.-H. Hong, C.-H. Chang, H.-C. Su, C.-C. Wu,
A.
Matoliukstyte,
J.
Simokaitiene,
S.
Grigalevicius,
J. V. Grazulevicius and C.-P. Hsu, Adv. Mater., 2007, 19, 862.
20 K.-K. Kim, B.-S. Moon and C.-S. Ha, J. Appl. Phys., 2006, 100,
064511.
21 N. Matsusue, Y. Suzuki and H. Naito, Jpn. J. Appl. Phys., 2005, 44,
3691.
22 J. H. Park, E. K. Kim, I. M. El-Deeb, S. J. Jung, D. H. Choi,
D.-H. Kim, K. H. Yoo, J. H. Kwon and S. H. Lee, Bull. Korean
Chem. Soc., 2011, 32, 841.
23 (a) E. Han, L. Do, Y. Niidome and M. Fujihira, Chem. Lett., 1994, 23,
969; (b) S. Tokito and Y. Taga, Appl. Phys. Lett., 1995, 66, 673; (c)
S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li and Y. Ma, J.
Mater. Chem., 2008, 18, 4802.
24 F.-M. Hsu, C.-H. Chien, C.-F. Shu, C.-H. Lai, C.-C. Hsieh,
K.-W. Wang and P.-T. Chou, Adv. Funct. Mater., 2009, 19,
2834.
Acknowledgements
The authors gratefully acknowledge the financial support from
National Science Council and Ministry of Economic Affairs of
Taiwan.
Notes and references
1 M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151.
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 14971–14978 | 14977