6254
G.-X. Wan et al. / Tetrahedron Letters 52 (2011) 6250–6254
S
A
H
SH
S C S
O
S
O
O
S
CS2
R
NH
NH2
R
S
NH
NH2
R
N
NH
A
A
O
O
O
1
3
O
S
R
NH
N
C
S
A
5
O
O
S
S
R
NH
HN
C
SH
R
S
S
O
O
S
O
O
A
H2S
S
NH HN C NH HN
S
R
R
N
NH
4
A
A
A
O
O
O
6
2
Scheme 1. Possible route for the cyclization reaction (SG was omitted for clarity).
2. (a) Li, C.-J.; Chen, L. Chem. Soc. Rev. 2006, 35, 68; (b) Li, C.-J. Chem. Rev. 2005,
105, 3095.
3. (a) Lindström, U. M. Chem. Rev. 2002, 102, 2751; (b) Hashimoto, T.; Maruoka, K.
In Asymmetric Phase Transfer Catalysis; Maruoka, K., Ed.; Wiley-VCH: Weinheim,
2008; pp 1–9; (c) Dehmlow, E. V.; Dehmlow, S. S. Phase Transfer Catalysis;
Verlag Chemie: Weinheim, 1980. pp. 9–22.
4. (a) Minakata, S.; Komatsu, M. Chem. Rev. 2009, 109, 711; (b) Minakata, S.; Hotta,
T.; Oderaotoshi, Y.; Komatsu, M. J. Org. Chem. 2006, 71, 7471; (c) Minakata, S.;
Kano, D.; Oderaotoshi, Y.; Komatsu, M. Angew. Chem., Int. Ed. 2004, 43, 79.
5. (a) Ding, Q.; Cao, B.; Zong, Z.; Peng, Y. J. Comb. Chem. 2010, 12, 370; (b) Yang, X.-
D.; Zeng, X.-H.; Zhao, Y.-H.; Wang, X.-Q.; Pan, Z.-Q.; Li, L.; Zhang, H.-B. J. Comb.
Chem. 2010, 12, 307; (c) Wu, H.; Lin, W.; Wan, Y.; Xin, H.-Q.; Shi, D.-Q.; Shi, Y.-
H.; Yuan, R.; Bo, R.-C.; Yin, W. J. Comb. Chem. 2010, 12, 31; (d) Basu, B.; Paul, S.;
Nanda, A. K. Green Chem. 2009, 11, 1115; (e) Okamura, H.; Iiji, H.; Hamada, T.;
Iwagawa, T.; Furuno, H. Tetrahedron 2009, 65, 10709; (f) Zhang, E.; Tu, Y.-Q.;
Fan, C.-A.; Zhao, X.; Jiang, Y.-J.; Zhang, S.-Y. Org. Lett. 2008, 10, 4943; (g) You, L.;
Feng, S.; An, R.; Wang, X.; Bai, D. Tetrahedron Lett. 2008, 49, 5147; (h) Mangu,
N.; Kaiser, H. M.; Kar, A.; Spannenberg, A.; Beller, M.; Tse, M. K. Tetrahedron
2008, 64, 7171.
6. (a) Azizi, N.; Khajeh-Amiri, A.; Ghafuri, H.; Bolourtchian, M. Mol. Divers. 2011,
15, 157; (b) Zuend, S. J.; Coughlin, M. P.; Lalonde, M. P.; Jacobsen, E. N. Nature
2009, 461, 968.
7. For reviews, see: (a) Li, A.-F.; Wang, J.-H.; Wang, F.; Jiang, Y.-B. Chem. Soc. Rev.
2010, 39, 3729; (b) Zhang, Z.-G.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187;
(c) Li, H. Q.; Lv, P. C.; Yan, T.; Zhu, H. L. AntiCancer Agents Med. Chem. 2009, 9,
471.
8. (a) Monforte, A.-M.; Logoteta, P.; De Luca, L.; Iraci, N.; Ferro, S.; Maga, G.; De
Clercq, E.; Pannecouque, C.; Chimirri, A. Bioorg. Med. Chem. 2010, 18, 1702; (b)
Shi, Z.; Yu, P.; Chua, P.; Zhong, G. Adv. Syn. Catal. 2009, 351, 2797; (c) Li, L.;
Ganesh, M.; Seidel, D. J. Am. Chem. Soc. 2009, 131, 11648; (d) Parenti, M. D.;
Pacchioni, S.; Ferrari, A. M.; Rastelli, G. J. Med. Chem. 2004, 47, 4258.
9. Tang, L.; Romo, D. Heterocycles 2007, 74, 999.
10. (a) Li, H.-L.; Wu, Z.-S.; Yang, M.; Qi, Y.-X. Catal. Lett. 2010, 137, 69; (b) Cui, Y.;
Jiao, Z.; Gong, J.; Yu, Q.; Zheng, X.; Quan, J.; Luo, M.; Yang, Z. Org. Lett. 2010, 12,
4.
treated in an oven to transform silanol („SiOH) groups partially to
siloxane bridges („SiOSi„).5d It might result in poorer acidity of
SG because the silanol group is commonly thought to be responsi-
ble for the Lewis or Brønsted acidity of SG. As the result, pre-heated
SG did not show lower promoting activity than normal SG. There-
fore, SG probably mainly plays a role via the adsorptive nature of
its surface, which is similar to that described by Minakata et al.4
The surface area of silica gel available for a reaction in SG-H2O sys-
tem would be quite large compared with that of the interface in a
conventional liquid-liquid biphasic system. Thus, based on the
aforementioned literatures and our observation, the plausible
mechanism is proposed as depicted in Scheme 1.
In conclusion, we have developed a mild and efficient method
for the synthesis of N-sulfonylcyclothioureas via the reaction of
N-sulfonyldiamines with CS2 in silica gel-water system. This proto-
col is appropriate for the cyclization of a variety of N-sulfonyl dia-
mines on a cheap, neutral, environmentally benign, and recyclable
surface of silica gel.
Acknowledgment
We thank the National Natural Science Foundation of China
(Grant no. 20802049) for the financial support.
Supplementary data
Supplementary data associated with this article can be found, in
11. McFarland, J. W.; Kozel, T. H.; Stuhlmacher, K. R.; Chevalier, T. S. J. Heterocycl.
Chem. 1980, 17, 273.
12. (a) Kang, I.-J.; Wang, L.-W.; Hsu, S.-J.; Lee, C.-C.; Lee, Y.-C.; Wu, Y.-S.; Hsu, T.-A.;
Yueh, A.; Chao, Y.-S.; Chern, J.-H. Bioorg. Med. Chem. Lett. 2009, 19, 4134; (b)
Flemer, S.; Madalengoitia, J. S. Synthesis 2007, 1848.
References and notes
13. Maddani, M. R.; Prabhu, K. R. J. Org. Chem. 2010, 75, 2327.
14. (a) Ding, C. W.; Zhang, M. J.; Gen, L. J.; Li, R. M. Arkivoc 2010, 49; (b) Ding, C. W.;
Zhang, M. J.; Ma, N. Chin. Chem. Lett. 2009, 20, 1166; (c) Wan, G.; Xu, L.; Ma, X.;
Zhang, Y.; Wang, J.; Zhang, J.; Ma, N. Chin. J. Chem. 2011, in press.
1. For reviews, see: (a) Mojet, B. L.; Ebbesen, S. D.; Lefferts, L. Chem. Soc. Rev. 2010,
39, 4643; (b) Li, C.-J. Acc. Chem. Res. 2010, 43, 581; (c) Lamblin, M.; Nassar-
Hardy, L.; Hierso, J. C.; Fouquet, E.; Felpin, F. X. Adv. Syn. Catal. 2010, 352, 33; (d)
Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725; (e) Burtscher, D.; Grela, K.
Angew. Chem., Int. Ed. 2009, 48, 442.