ORGANIC
LETTERS
2011
Vol. 13, No. 24
6394–6397
Functionalization of a Simple
Dithienylethene via Palladium-Catalyzed
Regioselective Direct Arylation
Hiroki Kamiya,† Shuichi Yanagisawa,‡ Satoru Hiroto,† Kenichiro Itami,*,‡ and
Hiroshi Shinokubo*,†
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University,
Chikusa-ku, Nagoya 464-8603, Japan, and Department of Chemistry, Graduate School
of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
hshino@apchem.nagoya-u.ac.jp; itami.kenichiro@a.mbox.nagoya-u.ac.jp
Received October 9, 2011
ABSTRACT
The direct arylation on the thienyl groups of a diarylethene with various aryl iodides efficiently provided arylated dithienylethenes under palladium
catalysis. Unsymmetrically substituted dithienylethenes were also synthesized by this protocol. This procedure allows a rapid access to a variety
of aryl-substituted dithienylethenes from a single substrate of a simple dithienylethene.
In recent years, organic photochromic compounds
have attracted much attention due to the potential
applications for photoswitching materials.1 Among var-
ious photochromic systems, diarylethene is one of the
most prospective organic molecules owing to their ad-
vantageous property over other photochromic com-
pounds in terms of their thermal stability and fatigue
resistance as well as their intriguing photochromic
behavior.2 Diarylethenes often consist of arylated thie-
nyl groups, of which aryl substituents can control the
absorption property of the diarylethenes, thus tuning the
color change of the photochromic reaction. However,
the synthesis of such aryl-substituted dithienylethenes has
been carried out through multistep synthesis, which com-
menced with the preparation of arylated thiophenes.3
In the past decade, transition-metal-catalyzed direct
CꢀH arylation of aromatic and heteroaromatic com-
pounds has been an active area of research in organic
synthesis and organometallic chemistry.4,5 In particular, a
ligand-controlled regiodivergent direct arylation of thio-
phenes has been recently reported.6 The employment of
2,20-bipyridyl as a ligand proceeded with R-selectivity to
† Department of Applied Chemistry, Graduate School of Engineering.
‡ Department of Chemistry, Graduate School of Science.
(3) (a) Hanazawa, R.; Sumiya, R.; Horikawa, Y.; Irie, M. J. Chem.
Soc., Chem. Commun. 1992, 206. (b) Irie, M.; Sakemura, K.; Okinaka,
M.; Uchida, K. J. Org. Chem. 1995, 60, 8305.
(1) (a) Brown, G. H. Photochromism; Wiley-Interscience: New York,
NY, 1971. (b) D€urr, H.; Bouas-Laurent, H. Photochromism: Molecules and
Systems; Elsevier: Amsterdam, 1990. (c) Irie, M. Photo-reactive Materials
for Ultrahigh Density Optical Memory; Elsevier: Amsterdam, 1994.
(d) Raymo, F. M.; Tomasulo, M. Chem. Soc. Rev. 2005, 34, 327. (e) Gust,
D.; Moore, T. A.; Moore, A. L. Chem. Commun. 2006, 1169. (f) Irie, M.
Bull. Chem. Soc. Jpn. 2008, 81, 917.
(2) (a) Irie, M. Chem. Rev. 2000, 100, 1685. (b) Matsuda, K.; Irie, M.
J. Photochem. Photobiol. C 2004, 5, 169. (c) Irie, M.; Uchida, K. Bull.
Chem. Soc. Jpn. 1998, 71, 985. (d) Morimoto, M.; Irie, M. Chem.
Commun. 2005, 3895. (e) Tian, H.; Wang, S. Chem. Commun. 2007, 781.
(4) For recent reviews on CꢀH bond arylation of arenes, see:
(a) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed.
2009, 48, 9792. (b) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev.
2008, 107, 174. (c) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007,
36, 1173. (d) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2009, 48, 5094. (e) Kakiuchi, F.; Kochi, T. Synthesis 2008,
3013. (f) Bellina, F.; Rossi, R. Tetrahedron 2009, 65, 10269. (g) Lei, A.; Liu,
W.; Liu, C.; Chen, M. Dalton Trans. 2010, 39, 10352. (h) Wencel-Delord, J.;
€
Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (i) Ackermann,
L. Chem. Rev. 2011, 111, 1315. (j) Hirano, K.; Miura, M. Synlett 2011, 294.
r
10.1021/ol2026069
Published on Web 11/22/2011
2011 American Chemical Society