Journal of the American Chemical Society
Page 6 of 7
Nucleophilic Fluorination of Primary Alkyl Halides using
(16) Zhu, Q.; Graff, D. E.; Knowles, R. R. Intermolecular Anti-
Markovnikov Hydroamination of Unactivated Alkenes with
Sulfonamides Enabled by Proton-Coupled Electron Transfer. J. Am.
Chem. Soc. 2018, 140, 741.
Tetrabutylammonium Fluoride in a tert-alcohol Medium. Tetrahedron
Lett. 2010, 51, 432. (e) Zhao, H.; Gabbai, G. Nucleophilic Fluorination
Reactions Starting from Aqueous Fluoride Ion Solutions. Org. Lett.
2011, 13, 1444. (h) Liu, Y.; Chen, C.; Li, H.; Huang, K.-W.; Tan, J.;
Weng, Z. Efficient SN2 Fluorination of Primary and Secondary Alkyl
Bromides by Copper(I) Fluoride Complexes. Organometallics, 2013,
32, 6587. (i) Bouvet, S.; Pegot, J.; Marrot, E.; Magnier, E. Solvent Free
Nucleophilic Introduction of Fluorine with [bmim][F]. Tetrahedron
Lett. 2014, 55, 826.
(6) Fluorination of 3º alkyl bromides is primarily limited to fluorination
of alkyl carbocation intermediates, which routinely suffer from
undesired elimination or rearrangement. For selected examples, see: (a)
Yoneda, N.; Kukuhara, T.; Nagata, S.; Suzuki, A. Halogen-exchange
Fluorination of Cyclo and Tertiary Alkyl Halides using Cu2O-HF-
Organic Base Solutions. Chem. Lett. 1985, 14, 1693. (b) Olah, G. A.;
Shih, J. G.; Singh, B. P.; Gupta, B. G. B. Fluorination of 1-
1
2
3
4
5
6
7
8
(17) (a) Nocera, G.; Young, A.; Palumbo F.; Emery, K. J.; Coulthard,
G.; McGuire, T.; Tuttle, T.; Murphy, J. A. Electron Transfer Reactions:
KOtBu (but not NaOtBu) Photoreduces Benzophenone under
Activation by Visible Light. J. Am. Chem. Soc. 2018, 140, 9751. (b) Li,
H.; Zhang, M.-T. Tuning Excited-State Reactivity by Proton-Coupled
Electron Transfer. Angew. Chem. 2016, 128, 13326. The calculated
value for the excited state reduction potential for benzophenone, which
has a ground state reduction potential of –1.69 V vs. Fc+/Fc0 and a
triplet energy of 69 kcal/mol, is 1.75 V vs. SCE in MeCN. This should
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
•
be sufficient to oxidize super silanol [Ep (SiOH+ /SiOH)] = + 1.54 V
vs. SCE in MeCN, see ref. 7b).
(18) Paredes, M. D.; Alonso, R. On the Radical Brook Rearrangement.
Reactivity of a-Silyl Alcohols, a-Silyl Alcohol Nitrite Esters, and b-
Haloacylsilanes under Radical-Forming Conditions. J. Org. Chem.
2000, 65, 2292.
(19) Supersilyl radical was used in this computational model as this
radical is well-characterized and studied for bromide atom transfer
reactions (see refs. 2 and 3). The exact silyl radical species that
performs the halogen atom abstraction using supersilanol is currently
under investigation. Both supersilane and supersilanol are competent
silane sources in this reaction (Table 1).
Haloadamantanes
and
–diamantane
with
Nitronium
Tetrafluoroborate/Pyridine Polyhydrogen Fluoride or Sodium
Nitrate/Pyridine Polyhydrogen Fluoride. Synthesis, 1983, 713. (c)
Olah, G. A.; Bollinger, J. M. Halonium Ion Formation via Neighboring
Halogen Participation. Trimethyl- and 1,1-Dimethylethylenehalonium
Ions. J. Am. Chem. Soc. 1968, 90, 947.
(7) For a recent example using a radical strategy to fluorinate tertiary
alkyl bromides, see: Chen, H.; Liu, Z.; Lv, Y.; Tan, X.; Shen, H.; Yu,
H.-Z.; Li, C. Selective Radical Fluorination of Tertiary Alkyl Halides
at Room Temperature. Angew. Chem. Int. Ed. 2017, 56, 15411.
(8) (a) Chatgilialoglu, C. Organosilanes in Radical Chemistry; Wiley:
Chichester, U.K., 2004. (b) Chatgilialoglu, C. Organosilanes as
Radical-based Reducing Agents. Acc. Chem. Res. 1992, 25, 188. (c)
Ballestri, M.; Chatgilialoglu, C.; Clark, K. B.; Griller, D.; Giese, B.;
Kopping, B. Tris(trimethylsilyl)silane as a Radical-based Reducing
Agent in Synthesis. J. Org. Chem. 1991, 56, 678.
(20) Under standard conditions, 3-bromocyclohexene failed to give the
desired allylic fluoride.
(21) (a) Spaggiari, A.; Vaccari, D.; Davoli, P.; Torre, G.; Prati, F. A
Mild Synthesis of Vinyl Halides and gem-Dihalides using Triphenyl
Phosphite-Halogen-Based Reagents. J. Org. Chem. 2007, 72, 2216. (b)
Takeda, T.; Sasaki, R.; Yamauchi, S.; Fujiwara, T. Transformation of
Ketones and Aldehydes to gem-Dihalides via Hydrazones Using
Copper(II) Halides. Tetrahedron 1997, 53, 557.
(9) (a) Zhang, P.; Le, C. C.; MacMillan, D. W. C. Silyl Radical
Activation of Alkyl Halides in Metallaphotoredox Catalysis: A Unique
Pathway for Cross-Electrophile Coupling. J. Am. Chem. Soc. 2016,
138, 8084. (b) Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan,
D.W.C. A Radical Approach to the Copper Oxidative Addition
Problem: Trifluoromethylation of Bromoarenes. Science 2018, 360,
1010. (c) Smith, R. T.; Zhang, X.; Rincón, J. A.; Agejas, J.; Mateos,
C.; Barberis, M.; García-Cerrada, S.; de Frutos, O.; MacMillan, D. W.
C. Metallaphotoredox-Catalyzed Cross-Electrophile Csp3–Csp3
Coupling of Aliphatic Bromides. J. Am. Chem. Soc. 2018, 140, 17433.
(d) Kornfilt, D. J. P.; MacMillan, D. W. C. Copper-Catalyzed
Trifluoromethylation of Alkyl Bromides. J. Am. Chem. Soc. 2019, 141,
6853.
(10) Yang, J.-D.; Wang, Y.; Xue, X.-S.; Cheng, J.-P. A Systematic
Evaluation of the N–F Bond Strength of Electrophilic N–F Reagents:
Hints for Atomic Fluorine Donating Ability. J. Org. Chem. 2017, 82,
4129.
(11) Gordon, A. J.; Ford, R. A. The Chemist’s Companion: A
Handbook of Practical Data, Techniques, and References; Wiley: New
York, 1972.
(12) Jiang, X.-K.; Ding, W. F.-X.; Zhang, Y.-H. The Nucleophilic Silyl
Radical: Dual-parameter Correlation Analysis of the Relative Rates of
Bromine-atom Abstraction Reactions as Measured by a Rigorous
Methodology. Tetrahedron, 1997, 53, 8479.
(13) Krech, R. H.; McFadden, D. L. An Empirical Correlation in
Activation Energy with Molecular Polarizability for Atom Abstraction
Reactions. J. Am. Chem. Soc. 1977, 99, 8402.
(14) Rueda-Becerril, M.; Sazepin, C. C.; Leung, J. C. T.; Okbinoglu,
T.; Kennepohl, P. Paquin, J.-F.; Sammis, G. M. Fluorine Transfer to
Alkyl Radicals. J. Am. Chem. Soc. 2012, 134, 4026.
(15) Ventre, S.; Petronijevic, F. R.; MacMillan, D. W. C.
Decarboxylative Fluorination of Aliphatic Carboxylic Acids via
Photoredox Catalysis. J. Am. Chem. Soc. 2015, 137, 5654.
ACS Paragon Plus Environment