6724
B. I. Usachev et al. / Tetrahedron Letters 52 (2011) 6723–6725
diffraction data, compound 2c exists in the 2H-triazole forms in the
solid state.
Ar
Ar
NaN3, EtOH-H2O, reflux,
4-5 h
CO2Et
CO2H
CO2Et
O
N
A tentative mechanism for the formation of CF3-triazoles 2 can
involve either nucleophilic attack by the azide ion at the CF3 acti-
vated carbon C-6, which is followed by cyclization of the interme-
diate vinyl azide7a into the triazoles, or cycloaddition between the
azide ion and the CF3-pyrones.7b
HN
N
36-86%
F3C
O
CF3
3a-d
(E)-4a-d
+
Ethyl 4-aryl-6-(trifluoromethyl)-2-oxo-2H-pyran-3-carboxyl-
ates 3a–d,6 due to the presence on the pyrone ring of another
activating electron-withdrawing substituent (CO2Et), reacted with
NaN3 under milder conditions (EtOH–H2O, reflux, 4–5 h) leading to
the formation of (E)-2-(ethoxycarbonyl)-3-[5-(trifluoromethyl)-
2H-1,2,3-triazol-4-yl]cinnamic acids (E)-4a–d in 36–86% yields
(Scheme 2). Heating pyrone 1c under reflux in the same medium
for 2 days gave only a 24% yield of triazole 2c. The structures of
CF3-triazoles (E)-4 were confirmed by conventional spectroscopic
methods and elemental analysis. In the 1H NMR spectra the labile
protons of 4 (NH and CO2H), in comparison with those of 2, ap-
peared as broad signals at lower fields in the range d 13.5–13.8
and 16.2–16.3.
Ar
CO2H
CO2Et
N
HN
N
CF3
(Z)-4a,d
c
d
a
b
4F-C6H4 4Cl-C6H4
Ar Ph
2-naphthyl
Scheme 2. Synthesis of CF3-triazoles 4a–d.
Table 1
CF3-triazoles 2a–d and 4a–d produced via Schemes 1 and 28,9
The mechanism of the reaction of 3 with NaN3 is probably sim-
ilar to that proposed above for the formation of 2. However,
according to the NMR spectra, crude compound (E)-4d contained
5% of isomer (Z)-4d, whereas the content of isomer (Z)-4a in crude
triazole (E)-4a reached 23%. Crude compounds 4b,c were obtained
in isomerically pure forms (no signals due to the Z-isomers were
found in the NMR spectra). Isomer (Z)-4a is distinguishable by 1H
NMR spectroscopy due to a small difference between the chemical
shifts of the ethyl protons and the ortho-phenyl protons of (E)-4a
and (Z)-4a. Thus, in the 1H NMR spectrum of 4a the methylene pro-
tons appeared as quartets at d 4.06 (77%) and 4.01 (23%), whereas
the ortho-phenyl protons appeared as doublets of doublets at d
7.13 (77%) and 7.19 (23%). In the 19F NMR spectrum, partially over-
lapping singlets due to the CF3 groups at d 103.6 [(Z)-4a] and 103.7
[(E)-4a] were observed. The use of harsher reaction conditions
(according to Scheme 1: DMSO, 120 °C) for the synthesis of 4
increased the content of side products.
Product
Conditions
Reaction time
Ratio Z:E
Yield (%)
Mp (°C)
2a
2b
2c
2d
4a
4b
4c
4d
A
A
A
A
B
B
B
B
40 min
30 min
1.5 h
1 h
4 h
5 h
100:0
100:0
100:0
100:0
23:77
0:100
0:100
5:95
48
78
86
70
68
82
86
36
72–73
184–186
108–110
187–189
138–139
140–142
181–182
194–197
5 h
4 h
(A) DMSO, NaN3 (1.1 equiv), 120 °C; (B) EtOH–H2O, NaN3 (1.1 equiv), reflux.
of these highly functionalized CF3-triazoles is of interest for the
development of the chemistry of trifluoromethylated and other
RF-bearing 2-pyrones.
A possible reason for the isomerization of (E)-4 into (Z)-4 can be
explained by the push–pull nature of triazoles 4. Electron-donating
aromatic substituents (Ar = Ph, 2-naphthyl) should decrease the
bond order between the methylidene carbons leading to the rota-
tion (isomerization) of (E)-4.
Acknowledgements
The authors thank the Deutsche Forschungsgemeinschaft
(Grant No. RO 362/45-1) and Ural Federal University for financial
support.
The results and conditions used for the synthesis of the 1,2,3-
triazoles 2 and 4 are presented in Table 1.
References and notes
In summary, reactions of 6-CF3-2-pyrones with sodium azide
have been described for the first time. These reactions represent
an efficient approach to 3-[5-(trifluoromethyl)-2H-1,2,3-triazol-4-
yl]cinnamic acids and monoethyl esters of [5-(trifluoromethyl)-
2H-1,2,3-triazol-4-yl]arylmethylidene malonic acids. The synthesis
1. (a) Zhou, L.; Amer, A.; Korn, M.; Burda, R.; Balzarini, J.; De Clercq, E.; Kern, E. R.;
Torrence, P. F. Antiviral Chem. Chemother. 2005, 16, 375–383; (b) Aher, N. G.;
Pore, V. S.; Mishra, N. N.; Kumar, A.; Shukla, P. K.; Sharma, A.; Bhat, M. K. Bioorg.
Med. Chem. Lett. 2009, 19, 759–763; (c) Bochis, R. J.; Chabala, J. C.; Harris, E.;
Peterson, L. H.; Barash, L.; Beattie, T.; Brown, J. E.; Graham, D. W.; Waksmunski,
F. S. J. Med. Chem. 1991, 34, 2843–2852; (d) El-Sayed, W. A.; Abdel-Rahman, A.
A.-H. Z. Naturforsch. 2010, 65b, 57–66; (e) Kim, D.-K.; Kim, J.; Park, H.-J. Bioorg.
Med. Chem. Lett. 2004, 14, 2401–2405.
2. (a) Ye, C.; Gard, G. L.; Winter, R. W.; Syvret, R. G.; Twamley, B.; Shreeve, J. M.
Org. Lett. 2007, 9, 3841; (b) Crossman, J. M.; Haszeldine, R. N.; Tipping, A. E. J.
Chem. Soc., Dalton Trans. 1973, 483; (c) Sibgatulin, D. A.; Bezdudny, A. V.;
Mykhailiuk, P. K.; Voievoda, N. M.; Kondratov, I. S.; Volochnyuk, D. M.;
Tolmachev, A. A. Synthesis 2010, 1075; (d) Bandera, Y. P.; Kanishchev, O. S.;
Timoshenko, V. M.; But, S. A.; Nesterenko, A. M.; Shermolovich, Y. G. Chem.
Heterocycl. Compd. 2007, 43, 1138.
3. (a) Sosnovskikh, V. Ya.; Usachev, B. I. Mendeleev Commun. 2002, 75; (b) Black, J.;
Boehmer, J. E.; Chrystal, E. J. T.; Kozakiewicz, A. M.; Plant, A. PCT Int. Appl.
071900, 2007; Chem. Abstr. 2007, 147, 66070.; (c) Greif, D.; Eilitz, U.; Pulst, M.;
Riedel, D.; Wecks, M. J. Fluorine Chem. 1999, 94, 91; (d) Bargamov, G. G.;
Bargamova, M. D. Russ. Chem. Bull. 1998, 47, 192; (e) Fahey, J. L.; Firestone, R. A.;
Christensen, B. G. J. Med. Chem. 1976, 19, 562; (f) Firestone, R. A.; Fahey, J. L.;
Christensen, B. G. US Patent 3 979 384, 1976; Chem. Abstr. 1977, 86, 72672.
4. (a) Ram, V. J.; Haque, N.; Nath, M.; Singh, S. K.; Hussaini, F. A.; Tripathi, S. C.;
Shoeb, A. Bioorg. Med. Chem. Lett. 1997, 7, 3149–3152; (b) Dong, Y.; Nakagawa-
Goto, K.; Lai, C. Y.; Morris-Natschke, S. L.; Bastow, K. F.; Lee, K. H. Bioorg. Med.
Chem. Lett. 2011, 21, 2341–2344; (c) Parker, S. R.; Cutler, H. G.; Jacyno, J. M.;
Hill, R. A. J. Agric. Food Chem. 1997, 45, 2774–2776.
Figure 1. Molecular structure of 2c (ORTEP diagram).