(s, 4H), 4.25 (q, 4H, J = 7.5 Hz), 1.31 (t, 6H, J = 7.5 Hz); 13C
NMR (CD2Cl2, 300 MHz) d 167.9, 162.3, 135.8, 133.4, 131.9,
129.4, 123.2, 62.2, 42.0, 14.4; MALDI-TOF (pos. mode) calcd for
[C32H18Cl4N2O8]+: 698; found 697.9.
3 (a) F. Wu¨rthner and M. Stolte, Chem. Commun., 2011, 47, 5109; (b) F.
Wu¨rthner, Chem. Commun., 2004, 1564.
4 Z. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald and F.
Wu¨rthner, ChemPhysChem, 2004, 5, 137.
5 R. Behrendt, M. Schenk, H-J. Musiol and L. Moroder, J. Pept. Sci.,
1999, 5, 519.
6 There is a current strong interest in the chemistry of perylene diimide-
carboxylics, especially of peptide carboxylic-substituted PBI’s: (a) F.
Yukruk, A. L. Dogan, H. Canpinar, D. Guc and E. U. Akkaya, Org.
Lett., 2005, 7, 2885; (b) O. Ozcan, F. Yukruk, E. U. Akkaya and D.
Uner, Appl. Catal., B, 2007, 71, 291; (c) E. Mete, D. Uner, M. Cakmak,
O. Gu¨lseren and S. Ellialtoglu, J. Phys. Chem. C, 2007, 111, 7539; (d) Y.
Xu, S. Leng, C. Xue, R. Sun, J. Pan, J. Ford and S. Jin, Angew. Chem.,
Int. Ed., 2007, 46, 3896; (e) D. Cakir, O. Gu¨lseren, E. Mete and S.
Ellialtioglu, J. Phys. Chem. C, 2011, 115, 9220.
7 (a) H. Y. Au-Yeung, P. Pengo, G. Dan Pantos, S. Otto and J. K. M.
Sanders, Chem. Commun., 2009, 419; (b) B. M. Bulheller, G. Dan
Pantos, J. K. M. Sanders and J. D. Hirst, Phys. Chem. Chem. Phys.,
2009, 11, 6017; (c) F. B. L. Cougnon, H. Y. Au-Yeung, G. Dan Pantos
and J. K. M. Sanders, J. Am. Chem. Soc., 2011, 133, 3198.
Synthesis of PDI-(Cl4)-[Gly(OBzl)]2, 4
4
was prepared from 1,6,7,12-tetrachloroperylene-3,4,9,10-
tetracarboxylic dianhydride22 (1 g, 1.89 mmol) and Glycine benzyl
ester trifluoroacetic salt21 ((1.2 g, 4.15 mmol) following the
procedure for 3. 4 is isolated as a red solid (1.3 g, 81%). DSC:
Tdec. = 322 ◦C; 1H NMR (CD2Cl2, 300 MHz) d 8.71 (s, 4H), 7.38
(m, 10H), 5.24 (s, 4H), 5.02 (s, 4H); 13C NMR (CD2Cl2, 300 MHz)
d 167.9, 162.3, 135.8, 133.5, 129.5, 129.0, 128.8, 128.5, 123.2, 67.8,
42.0; MALDI-TOF (pos. mode) calcd for [C42H22Cl4N2O8 + H]+:
823.0; found 823.0. Anal. Calcd. for: C, 61.19; H, 2.69; N, 3.40.
Found: C, 60.04; H, 2.83; N, 3.13.
8 Y. Li, G. Li, X. Wang, W. Li, Z. Su, Y. Zhang and Y. Ju, Chem.–Eur. J.,
2009, 15, 6399.
9 A. El-Ghayoury, C. Me´zie`re, S. Simonov, L. Zorina, M. Cobia´n, E.
Canadell, C. Rovira, B. Na´fra´di, B. Sipos, L. Forro´ and P. Batail,
Chem.–Eur. J., 2010, 16, 14051.
10 (a) L. Zorina, S. Simonov, C. Me´zie`re, E. Canadell, S. Suh, S. E. Brown,
P. Foury-Leylekian, P. Fertey, P. Pouget and P. Batail, J. Mater. Chem.,
2009, 19, 6980; (b) Y. Lakhdar, C. Me´zie`re, L. Zorina, M. Giffard,
P. Batail, E. Canadell, P. Auban-Senzier, C. Pasquier, D. Je´rome, B.
Na´fra´di and L. Fo´rro´, J. Mater. Chem., 2011, 21, 1516.
X-Ray structure analysis
2a: C38H28Cl4N4O10, M = 842.44, T = 150(1)K, triclinic, P1, a =
˚
9.978(3), b = 10.704(3), c = 17.817(6) A, a = 74.10(2), b = 81.31(2),
◦
g = 81.28(2) , V = 1796.9(9) A , Z = 2, Dc = 1.557 g cm-3,
3
˚
m = 3.97 cm-1, F(000) = 864, 2Hmax = 56.0◦, reflections measured
16721, unique reflections 11506 (Rint = 0.0668), reflections with
I > 2s(I) = 6817, parameters refined 885, R1 = 0.0713, wR2 =
0.1169, GOF = 1.015. 2b: C42H36Cl4N4O10, M = 898.55, T =
150(1)K, orthorhombic, P212121, a = 10.019(2), b = 16.372(3),
11 The importance of electrostatics in biology: (a) H. Akutsu and Y.
Takayama, Acc. Chem. Res., 2007, 40, 171; (b) G. Bra¨nden, M.
Bra¨nden, B. Schmidt, D. A. Mills, S. Ferguson-Miller and P. Brzezinski,
Biochemistry, 2005, 44, 10466; (c) R. N. Barnett, C. L. Cleveland, A.
Joy, U. Landman and G. B. Schuster, Science, 2001, 294, 567; (d) M. E.
Davis and J. A. McCammon, Chem. Rev., 1990, 90, 509; K. Harada, M.
Makino, H. Sugimoto, S. Hirota, T. Matsuo, Y. Shiro, Y. Hisaeda and T.
Hayashi, Biochemistry, 2007, 46, 9406; (e) F. C. Grozema, S. Tonzani,
Y. A. Berlin, G. C. Schatz, L. D. A. Siebbeles and M. A. Ratner, J.
Am. Chem. Soc., 2008, 130, 5157; (f) I. Levental, A. Cebers and P. A.
Janmey, J. Am. Chem. Soc., 2008, 130, 9025; (g) J. E. Goldberger, E. J.
Berns, R. Bitton, C. J. Newcomb and S. I. Stupp, Angew. Chem., Int.
Ed., 2011, 50, 6292.
12 (a) T. Murata, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui,
M. Maesato, H. Yamochi, G. Saito and K. Nakasuji, Angew. Chem.,
Int. Ed., 2004, 43, 6343; (b) T. Murata, Y. Morita, Y. Yakiyama, Y.
Nishimura, T. Ise, D. Shiomi, K. Sato, T. Takui and K. Nakasuji,
Chem. Commun., 2007, 4009; (c) Y. Morita, E. Miyazaki, K. Fukui, S.
Maki and K. Nakasuji, Bull. Chem. Soc. Jpn., 2005, 78, 2014; (d) E.
Miyazaki, Y. Morita, Y. Yakiyama, S. Maki, Y. Umemoto, M. Ohmoto
and K. Nakasuji, Chem. Lett., 2007, 36, 1102; (e) T. Murata, Y. Morita,
Y. Yakiyama, K. Fukui, H. Yamochi, G. Saito and K. Nakasuji, J.
Am. Chem. Soc., 2007, 129, 10837; (f) Y. Morita, Y. Yamamoto, Y.
Yakiyama, T. Murata and K. Nakasuji, Chem. Lett., 2008, 37, 24; (g) T.
Murata, Y. Yakiyama, K. Nakasuji and Y. Murata, CrystEngComm,
2011, 13, 3689.
13 (a) P. Blanchard, K. Boubekeur, M. Salle´, G. Duguay, M. Jubault, A.
Gorgues, J. D. Martin, E. Canadell, P. Aubansenzier, D. Jerome´ and
P. Batail, Adv. Mater., 1992, 4, 579; (b) A. Penicaud, K. Boubekeur,
P. Batail, E. Canadell, P. Auban-Senzier and D. Jerome´, J. Am. Chem.
Soc., 1993, 115, 4101; (c) A. Dolbecq, M. Fourmigue´, P. Batail and C.
Coulon, Chem. Mater., 1994, 6, 1413; (d) A. Dolbecq, M. Fourmigue´,
F. C. Krebs, P. Batail, E. Canadell, R. Clerac and C. Coulon, Chem.–
Eur. J., 1996, 2, 1275; (e) K. Boubekeur, R. Riccardi, P. Batail and E.
Canadell, C. R. Acad. Sci., 1998, 1, 627; (f) A. Dolbecq, A. Guirauden,
M. Fourmigue´, K. Boubekeur, P. Batail, M. M. Rohmer, W. Benard, C.
Coulon, M. Salle´ and P. Blanchard, J. Chem. Soc., Dalton Trans., 1999,
1241; (g) K. Heuze´, M. Fourmigue´, P. Batail, E. Canadell and P. Auban-
Senzier, Chem.–Eur. J., 1999, 5, 2971; (h) K. Heuze´, C. Me´zie`re, M.
Fourmigue´, P. Batail, C. Coulon, E. Canadell, P. Auban-Senzier and D.
Je´rome, Chem. Mater., 2000, 12, 1898; (i) A. Deluzet, R. Rousseau, C.
Guilbaud, I. Granger, K. Boubekeur, P. Batail, E. Canadell, P. Auban-
Senzier and D. Jerome´, Chem.–Eur. J., 2002, 8, 3884; (j) S. A. Baudron,
P. Batail, C. Rovira, E. Canadell and R. Cle´rac, Chem. Commun., 2003,
1820; (k) S. A. Baudron, N. Avarvari, P. Batail, C. Coulon, R. Cle´rac, E.
3
-3
˚
˚
c = 49.573(9) A, V = 8132(3) A , Z = 8, Dc = 1.468 g cm ,
m = 3.56 cm-1, F(000) = 3712, 2Hmax = 52.1◦, reflections measured
44150, unique reflections 11623 (Rint = 0.0686), reflections with I >
2s(I) = 7584, parameters refined 1095, R1 = 0.0642, wR2 = 0.1241,
GOF = 1.036. Single crystal X-ray diffraction data were collected
at 150 K using a Bruker Nonius KappaCCD diffractometer with
˚
monochromatized Mo-Ka-radiation (l = 0.71073 A, graphite
monochromator, combined j/w-scans). Empirical absorption
correction of experimental intensities was applied using the
SADABS program.28 The structures were solved by a direct
method followed by Fourier syntheses and refined by a full-matrix
least-squares method using the SHELX-97 programs.29 All non-
hydrogen atoms were refined in an anisotropic approximation. H-
atoms were placed in idealized positions and refined using a riding
model, Uiso(H) = 1.2Ueq(C). CCDC 833909 and 833910 contain
the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crys-
tallographic Data Centre via www.ccdc.cam.ac.uk/data_request/
cif.
Notes and references
1 (a) Supramolecular assemblies based on hydrogen bonds: G. R.
Desiraju and T. Steiner, The Weak Hydrogen Bond, Oxford University
Press, New York, 1999; (b) M. Alajarin, A. E. Aliev, A. D. Burrows, K.
D. M. Harris, A. Pastor, J. W. Steed and D. R. Turner, Supramolecular
Assembly via Hydrogen Bonds I, Structure and Bonding, Vol. 108, ed. D.
M. P. Mingos, Springer-Verlag, Berlin, 2004; (c) G. R. Desiraju, Chem.
Commun., 2005, 2995; (d) G. R. Desiraju, Angew. Chem., Int. Ed.,
2007, 46, 8342; (e) G. Gilli and P. Gilli, The nature of the hydrogen bond:
Outline of a comprehensive hydrogen bond theory, Oxford University
Press, New York, 2009.
2 Hydrogen bonding in p-type, TTF-based systems: M. Fourmigue´ and
P. Batail, Chem. Rev., 2004, 104, 5379.
8100 | Org. Biomol. Chem., 2011, 9, 8096–8101
This journal is
The Royal Society of Chemistry 2011
©