9 (a) P. Tarakeshwar, J. Y. Lee and K. S. Kim, J. Phys. Chem. A,
1998, 102, 2253–2255; (b) P. Tarakeshwar, S. J. Lee, J. Y. Lee and
K. S. Kim, J. Phys. Chem. A, 1999, 103, 184–191; (c) P. Tarakeshwar
and K. S. Kim, J. Phys. Chem. A, 1999, 103, 9116–9124;
(d) S. Kawahara, S. Tsuzuki and T. Uchimaru, Chem.–Eur. J.,
2005, 11, 4458–4464.
10 For a system featuring an aryl group bridging between otherwise
two-coordinate boron centres see: (a) M. Pilz, J. Allwohn,
W. Massa and A. Berndt, Angew. Chem., Int. Ed. Engl., 1990,
29, 399–400. For a recent paper examining alkene-borane p
coordination see: (b) X. Zhao and D. W. Stephan, J. Am. Chem.
Soc., 2011, 133, 12448–12450.
Fig. 3 HOMO of the Lpy ligand.
systems. Moreover, analyses of the electronic structures of
both Lpy and LNHC show that for both ligands, orbitals
featuring a significant contribution from the p system of the
flanking mesityl rings are found at energies close to the
11 For reviews of boron cation chemistry, see: (a) P. Kolle and
¨
¨
H. Noth, Chem. Rev., 1985, 85, 399–418; (b) W. E. Piers,
S. C. Bourke and K. D. Conroy, Angew. Chem., Int. Ed., 2005,
44, 5016–5036.
HOMO–LUMO gap (ꢂ5.23 and ꢂ5.22 eV for Lpy and LNHC
,
12 For recent borenium references see: (a) P. Jutzi, B. Krato,
M. Hursthouse and A. J. Howes, Chem. Ber., 1987, 120,
respectively). Somewhat surprisingly, for Lpy, this orbital is
the HOMO itself (Fig. 3) with the deeper lying HOMO-4
(at ꢂ5.48 eV) being of N-based lone pair character. As such,
the availability of energetically high-lying regions of electron
density at the flanking rings is demonstrated. That said,
the relatively long Bꢀ ꢀ ꢀC contacts measured for all of the
borenium systems reported here and the lack of significant
pyramidalization at the ipso carbon imply that the interaction
of the arene p system with the cationic boron centre is a
predominantly electrostatic one.18 Consistent with this notion,
the [(Lpy)H]+ cation also features a ‘bite’ angle (ca. 1111)
1091–1098; (b) W. F. Schneider, C. K. Narula, H. Noth and
¨
B. E. Bursten, Inorg. Chem., 1991, 30, 3919–3927;
(c) M. G. Davidson, M. A. Fox, T. G. Hibbert, J. A. K. Howard,
A. Mackinnon, I. S. Neretin and K. Wade, Chem. Commun., 1999,
1649–1650; (d) I. Ghesner, W. E. Piers, M. Parveza and
R. McDonald, Chem. Commun., 2005, 2480–2482; (e) T. S. De
Vries and E. Vedejs, Organometallics, 2007, 26, 3079–3081;
(f) C. W. Chiu and F. P. Gabbaı, Organometallics, 2008, 27,
¨
1657–1659; (g) M. A. Dureen, A. Lough, T. M. Gilbert and
D. W. Stephan, Chem. Commun., 2008, 4303–4305;
(h) C. Bonnier, W. E. Piers, M. Parvez and T. S. Sorensen, Chem.
Commun., 2008, 4593–4595; (i) T. Matsumoto and F. P. Gabbaı
¨
,
Organometallics, 2009, 28, 4252–4253; (j) C. I. Someya, S. Inoue,
C. Prasang, E. Irran and M. Driess, Chem. Commun., 2011, 47,
¨
somewhat narrower than that found in the free ligand Lpy 18
.
6599–6601; (k) D. McArthur, C. P. Butts and D. M. Lindsay,
Chem. Commun., 2011, 47, 6650–6652; (l) E. Tsurumaki,
S. Hayashi, F. S. Tham, C. A. Reed and A. Osuka, J. Am. Chem.
Soc., 2011, 133, 11956–11959.
We thank Dr Michael Ingleson (University of Manchester)
for preliminary reactivity studies on [LpyꢀBBr2]+ and the
EPSRC National Mass Spectrometry Service Centre; JN and
JIB thank the DFG and NSERC, respectively, for post-
doctoral fellowships.
13 Borylation using borenium species: (a) E. L. Muetterties, J. Am.
Chem. Soc., 1960, 82, 4163–4166; (b) E. L. Muetterties and
F. N. Tebbe, Inorg. Chem., 1968, 7, 2663–2664; (c) T. S. De Vries,
A. Prokofjevs, J. N. Harvey and E. Vedejs, J. Am. Chem. Soc.,
2009, 131, 14679–14687; (d) A. Del Grosso, R. G. Pritchard,
C. A. Muryn and M. J. Ingleson, Organometallics, 2010, 29,
241–249; (e) A. Del Grosso, P. J. Singleton, C. A. Muryn and
M. J. Ingleson, Angew. Chem., Int. Ed., 2011, 50, 2102–2106.
14 See, for example: E. J. Corey, Angew. Chem., Int. Ed., 2009, 48,
2100–2117.
Notes and references
z The related figures calculated using BP(tzp) are 22.1/21.9 kJ molꢂ1
1 P. Sykes, Guidebook to Mechanism in Organic Chemistry, Longman,
Harlow, 1986.
.
2 See for example: P. E. Kundig, Transition Metal Arene p-Complexes
¨
15 For an early report of [(4-Me-py)ꢀBCl2]+, see: G. E. Ryschkewitsch
and J. W. Wiggins, J. Am. Chem. Soc., 1970, 92, 1790–1791.
16 For a study of related lutidine/Group 13 systems, see: C. K. Narula
and H. Noth, Inorg. Chem., 1985, 24, 2532–2539.
¨
17 (a) E. Bosch and C. L. Barnes, Inorg. Chem., 2001, 40, 3234;
in Organic Synthesis and Catalysis, Springer, Heidelberg, 2004.
3 The coordination of arenes to low-valent post-transition element
cations has been extensively investigated: (a) H. Schmidbaur and
A. Schier, Organometallics, 2008, 27, 2361–2395. For additional
references to arene coordination by Hg2+ see: (b) M. R. Haneline,
(b) S. Hermanek, Chem. Rev., 1992, 92, 325–362.
´
¨
J. B. King and F. P. Gabbaı, Dalton Trans., 2003, 2686–2690.
18 In the presence of adventitious moisture, the reaction of Lpy with
GaCl3 generates [(Lpy)H][GaCl4]; see also T. Pell, D. P. Mills,
A. J. Blake, W. Lewis and S. T. Liddle, Polyhedron, 2010, 29,
120–125.
4 (a) R. Rathore, J. Hecht and J. K. Kochi, J. Am. Chem. Soc., 1998,
120, 13278–13279. See also: (b) G. A. Olah, H. C. Lin and
Y. K. Mo, J. Am. Chem. Soc., 1972, 94, 3667–3669.
5 (a) J. B. Lambert, S. Zhang, C. L. Stern and J. C. Huffman,
Science, 1993, 260, 1917–1918. For a very recent study of terphenyl
silylium cations valence isoelectronic with the current systems, see:
(b) P. Romanato, S. Duttwyler, A. Linden, K. K. Baldridge and
J. S. Siegel, J. Am. Chem. Soc., 2011, 133, 11184–11186.
6 (a) G. S. Hair, A. H. Cowley, R. A. Jones, B. G. McBurnett and
A. Voigt, J. Am. Chem. Soc., 1999, 121, 4922–4923. See also:
(b) J. F. Malone and W. S. McDonald, J. Chem. Soc., Dalton
Trans., 1972, 2646–2648.
19 For [LpyꢀBBr2][BBr4]: B(1)–Br(2) 1.879(3), B(1)–N(4) 1.530(7) A.
Compare with d(B–Br) = 1.902(5) and 1.897(7) A for 2,6-
Mes2C6H3BBr2 and 2,6-Trip2C6H3BBr2, and d(B–N) = 1.530(6) A
for [(phenanthridine)ꢀB{N(Me)CH}2]+
: (a) W. J. Grigsby and
P. P. Power, J. Am. Chem. Soc., 1996, 118, 7981–7988; (b) C. K.
Narula and H. Noth, J. Chem. Soc., Chem. Commun., 1984,
¨
1023–1024.
20 B-arene contacts as short as 2.730(3) A have been reported in
´
1,8-naphthalenediyl systems: J. D. Hoefelmeyer, S. Sole and
¨
7 (a) M. Schulte and F. P. Gabbaı, Chem.–Eur. J., 2002, 8,
F. P. Gabbaı, Dalton Trans., 2004, 1254–1258.
¨
3802–3807. See also: (b) J. F. Malone and W. S. McDonald,
J. Chem. Soc. (A), 1970, 3362–3367; (c) S. Ulvenlund,
A. Wheatley and L. A. Bengtsson, J. Chem. Soc., Dalton Trans.,
1995, 255–263; (d) M. Gorlov and L. Kloo, Coord. Chem. Rev.,
2008, 252, 1564–1576.
21 The respective % buried volumes calculated for the Lpy and LNHC
OMtools/sambvca.php) are 35.3, 37.0% (based on the respective
AlCl3 complexes) or 35.9, 37.6% (based on LꢀGaCl3): A. Poater,
B. Cosenza, A. Correa, S. Giudice, F. Ragone, V. Scarano and
L. Cavallo, Eur. J. Inorg. Chem., 2009, 1759–1766.
8 For a pertinent recent example, see: N. Ishida, T. Moriya, T. Goya
and M. Murakami, J. Org. Chem., 2010, 75, 8709–8712.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 12295–12297 12297