6
A.K. Singh et al. / Spectrochimica Acta Part A 85 (2012) 1–6
substituted ligands/compounds are more active than the other
substituted ligands/compounds due to the chelating properties of
2-chloro group. The compound [ZnL2(H2O)2] is more active against
all bacteria and fungi because they have additional heterocyclic ring
(indoline-2,3-dione). All Schiff bases and Zn(II) complexes are more
active against E. coli.
[6] R. Baumgrass, M. Weivad, F. Erdmann, J. Biol. Chem. 276 (2001) 47914.
[7] O. Bekirkan, H. Bectas, Molecule 11 (2006) 469.
[8] B.S. Holla, B. Veerendra, M.K. Shivanda, B. Poojari, Eur. J. Med. Chem. 38 (2003)
759.
[9] T.S. Lobana, Proc. Indian Acad. Sci. 112 (2000) 323.
[10] Z.A. Kapalcikli, G.T. Zitoungi, A. Ozdemir, G. Revial, Eur. J. Med. Chem. 43 (2008)
155.
[11] J. Liu, W. Tao, H. Dai, Z. Jin, J. Fang, Hetroatom Chem. 18 (2007) 376.
[12] M.A.M. Taha, S.M. EI-Badry, Phosphorus Sulfur 182 (2007) 1011.
[13] L.Z. Xu, F.L. Xu, K. Li, Q. Lin, K. Zhou, Chin. J. Chem. 23 (2005) 1421.
[14] W.Z. Shen, F. Kang, Y.J. Sun, P. Cheng, S.P. Yan, D.Z. Liao, Z.H. Jiang, Inorg. Chem.
Commun. 6 (2003) 408.
4. Conclusions
The new zinc(II) complexes with Schiff bases derived from
3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole have
been synthesized and characterized on the basis of analyses, elec-
trical conductance, magnetic moment and spectral data. The Schiff
bases derived from 3-substituted phenyl-4-amino-5-hydrazino-
1, 2, 4-triazole and isatin/2-hydroxyacetophenone act as dibasic
tetradentate ligands coordinating through the two azomethine
nitrogens and two oxygen atoms to the metal ion. The ligands
derived from 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-
triazole and benzaldehyde act as neutral, bidentate ligands. The
six-coordinated structures of complexes have been proposed. Anti-
fungal and antibacterial activity of the ligands and the complexes
have also been evaluated which show that activity increases on
chelation.
[15] D.A. Gianolio, M. Lanfranchi, F. Lusardi, L. Marchio, M.A. Pellinghelli, Inorg.
Chim. Acta 309 (2000) 91.
[16] B.S. Holla, K.A. Poojary, B. Kalluraya, Farmaco 51 (1996) 793.
[17] S.N. Pandeya, D. Sriram, G. Nath, E. de Clrcq, Arzneim. Forsch. Drug Res. 50
(2000) 55.
[18] F.P. Invidiata, S. Grimaudo, P. Giammanco, L. Giammanco, Farmaco 46 (1991)
1489.
[19] O.G. Todoulou, A. Papadaki-Valiraki, E.C. Filippatos, S. Ikeda, E. De Clercq, Eur.
J. Med. Chem. 29 (1994) 127.
[20] F.P. Invidiata, D. Simoni, F. Scintu, N. Pinna, Farmaco 51 (1996) 659.
[21] G.G. Mohamed, C.M. Sharaby, Spectrochim. Acta A 66 (2007) 949.
[22] K. Singh, M.S. Barwa, P. Tyagi, Eur. J. Med. Chem. 42 (2007) 394.
[23] N.L.D. Filho, R.M. Costa, F. Marangoni, D.S. Pereira, J. Colloid Interface Sci. 316
(2007) 250.
[24] M.H. Palmer, D. Christen, J. Mol. Struct. 705 (2004) 177.
[25] Z.H. Chohan, H. Pervez, A. Rauf, A. Scozzafava, C.T. Supuran, J. Enzym. Inhib.
Med. Chem. 17 (2002) 117.
[26] Z.H. Chohan, A. Scozzafava, C.T. Supuran, J. Enzym. Inhib. Med. Chem. 17 (2002)
261.
[27] P. Banerjee, O.P. Pandey, S.K. Sengupta, Trans. Met. Chem. 33 (2008) 1047.
[28] P.G. Avaji, B.N. Reddy, S.A. Patil, Trans. Met. Chem. 31 (2006) 842.
[29] A. Mala, A.K. Srivastava, O.P. Pandey, S.K. Sengupta, Trans. Met. Chem. 25 (2000)
613.
[30] V. Sambhy, M.M. MacBride, B.R. Peterson, A. Sen, J. Am. Chem. Soc. 128 (2006)
9798.
Acknowledgements
The authors are thankful to the Head, Sophisticated Analytical
Instrument Facility, Central Drug Research Institute, Lucknow, for
providing IR, 1H NMR, 13C NMR and FAB mass spectra data. We
thank the UGC [Ref.F.4-5/2006 (XI plan)/23 dated Jan 12, 2007)
for financial support. Authors are also thankful to Department of
Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, for help
in evaluating antibacterial activities.
[31] S.A. Patil, V.H. Naika, A.K.D. Kulkarnia, P.S. Badami, Spectrochim. Acta Part A 75
(2010) 347.
[32] K. Singh, M.S. Barwa, P. Tyagi, Eur. J. Med. Chem. 41 (2006) 147.
[33] S. Gaur, B. Sharma, J. Ind. Chem. Soc. 8 (2003) 841.
[34] T.T. Daniel, K. Natarajan, Trans. Met. Chem. 25 (2000) 311.
[35] K. Serbest, A. Ozen, Y. Onver, E. Mustafa, I. Degirmencioglu, K. Sancak, J. Mol.
Struct. 922 (2009) 1.
[36] S.J. Swamy, S. Pola, Spectrochim. Acta Part A 70 (2008) 992.
[37] G. Singh, P.A. Singh, K. Singh, D.P. Singh, R.N. Handa, S.N. Dubey, Proc. Natl.
Acad. Sci. India 72A (2002) 87.
References
[38] P.R. Shukla, V.K. Singh, A.M. Jaiswal, J. Narain, J. Ind. Chem. Soc. 60 (1983) 321.
[39] A.J. Atkins, D. Black, R.L. Finn, A. Marin-Becerra, A.J. Blake, L. Ruiz-Ramirez, W.S.
Li, M. Schroder, J. Chem. Soc. Dalton Trans. 9 (2003) 1730.
[40] N. Kawabata, Prog. Polym. Sci. 17 (1992) 1.
[1] X.F. Luo, X. Hu, X.Y. Zhao, S.H. Goh, X.D. Li, Polymer 44 (2003) 5285.
[2] L. Streyer, Biochemistry, Freeman, New York, 1995.
[3] V. Razakantoanina, N.K.P. Phung, G. Jaureguiberry, Parasitol. Res. 86 (2000) 665.
[4] Q.X. Li, H.A. Tang, Y.Z. Li, M. Wang, C.G. Xia, J. Inorg. Biochem. 78 (2000) 167.
[5] P.J.E. Quintana, A. De Peyder, S. Klatzke, H.J. Park, Toxicol. Lett. 117 (2000) 85.
[41] G. Shen, J. Li, J. Appl. Polym. Sci. 78 (2000) 676.