Herein, wedemonstratethe first iodine promoted sp3 CꢀH
bond activation for the efficient and direct synthesis of
AAP zwitterions via a new multicomponent reaction in the
presence of triethylamine without the use of any transition
metal.
solvent. Initial trials using metal triflates Sc(OTf)3, Zn(OTf)2,
Fe(OTf)3 and Lewis acids like AlCl3, ScBr3, BF3(OEt)2 did
not promote the desired reaction at all. Only Cu(OTf)2 and
CuCl2 promoted the reaction in very low yield (10%). To
our surprise when iodine was used as a Lewis acid in the
reaction for the synthesis of an AAP zwitterion, the results
obtained were interesting. The reaction proceeded to form
the desired zwitterion in low yield (35%) with 40 mol %
iodine. Furtherwetried tooptimizethe reactionconditions
with iodine to get improved results. The reaction pro-
gressed in improved yield (45%) with 70 mol % of iodine.
At room temperature with 100 mol % iodine, the reaction
was complete after 36 h and we obtained a 55% reaction
yield. Encouraged by these results we adopted a sequential
addition methodology to form zwitterions with the above-
mentioned standardized reaction conditions to further im-
prove the reaction yield. We added quinaldine, pyridine,
and iodine and stirred the reaction for 2 h at 100 °C,
followed by the addition of benzaldehyde, meldrum acid,
and triethylamine at room temperature in acetonitrile as
solvent. To our delight the reaction was complete in 24 h
and a 70% reaction yield was obtained. However any
further increase in the iodine amount (150 mol %) did
not improve the yield (Table 1). At higher temperatures
(70ꢀ80 °C), a complex mixture of products resulted which
were difficult to identify. These zwitterions are usually very
reactive species, which should be kept at low temperature
and in an inert atmosphere.
Scheme 1. Synthesis of AAP Zwitterions from Quinaldine,
Pyridine, Aromatic Aldehydes, and Meldrum Acid
Our strategy for the synthesis of unusual charge sepa-
rated AAP-meldrum acid zwitterionic salts involve a one-
pot multicomponent reaction of quinaldine, pyridine, aro-
matic aldehydes, and meldrum acid in the presence of iodine
and triethylamine. We started our exploration by taking
quinaldine as an alkyl azaarene, pyridine, benzaldehyde,
and meldrum acid as model substrates for the reaction.
Based on precedent in the Lewis acid catalyzed intramole-
cular C(sp3)ꢀH functionalization7 and Lewis acid suppor-
ted C(sp2)ꢀH activation of pyridines and/or quinolines,8
we envisioned the use of different Lewis acids9 for the func-
tionalization of quinaldine under proton-transfer condi-
tions (Table 1).
Table 1. Optimization with Different Lewis Acids
To test the feasibility of our hypothesis, we screened
various Lewis acids using quinaldine, pyridine, benzaldehyde,
and meldrum acid with triethylamine in acetonitrile as
Lewis acid
time
(h)
yield
(%)c
entry
(x mol %)
1a
Sc(OTf)3 (40 mol %)
Zn(OTf)2 (40 mol %)
Fe(OTf)3 (40 mol %)
Cu(OTf)2 (40 mol %)
AlCl3 (40 mol %)
ScBr3 (40 mol %)
CuCl2 (40 mol %)
BF3(OEt)2 (40 mol %)
I2 (40 mol %)
36
36
36
36
36
36
36
36
36
36
36
24
48
0
0
(5) (a) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.;
Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899–907. (b) Nair,
V.; Biju, A. T.; Vinod, A. U.; Suresh, E. Org. Lett. 2005, 7, 5139–5142.
(c) Nair, V.; Menon, R. S.; Sreekanth, A. R.;Abhilash, N.; Biju, A. T. Acc.
Chem. Res. 2006, 39, 520–530. (d) Nair, V.; Deepthi, A.; Poonoth, M.;
Santhamma, B.; Vellalath, S.; Babu, B. P.; Mohan, R.; Suresh, E. J. Org.
Chem. 2006, 71, 2313–2319.
(6) (a) Yan, C. G.; Cai, X. M.; Wang, Q. F.; Wang, T. Y.; Zheng, M.
Org. Biomol. Chem. 2007, 5, 945–951. (b) Yan, C. G.; Song, X. K.; Wang,
Q. F.; Sun, J.; Siemeling, U.; Bruhn, C. Chem. Commun. 2008, 1440–
1442. (c) Wang, Q. F.; Hou, H.; Hui, L.; Yan, C.-G. J. Org. Chem. 2009,
74, 7403–7406. (d) Wang, Q. F.; Song, X. K.; Chen, J.; Yan, C. G. J.
Comb. Chem. 2009, 11, 1007–1010. (e) Yan, C. G.; Wang, Q. F.; Song,
X. K.; Sun, J. J. Org. Chem. 2009, 74, 710–718.
(7) (a) MacQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2009, 131,
402–403. (b) MacQuaid, K. M.; Long, J. Z.; Sames, D. Org. Lett. 2009,
11, 2972–2975. (c) Murarka, S.; Zhang, C.; Konieczynska, M. D.; Seidel,
D. Org. Lett. 2009, 11, 129–132. (d) Shikanai, D.; Murase, H.; Hata, T.;
Urabe, H. J. Am. Chem. Soc. 2009, 131, 3166–3167. (e) Komai, H.;
Yoshino, T.; Matsunaga, S.; Kanai, M. Org. Lett. 2011, 13, 1706–1709.
(f) Song, G.; Su, Y.; Gong, X.; Han, K.; Li, X. Org. Lett. 2011, 13, 1968–
1971.
2a
3a
0
4a
10
0
5a
6a
0
7a
10
0
8a
9a
35
45
55
70
70
10a
11a
12b
13b
I2 (70 mol %)
I2 (100 mol %)
I2 (100 mol %)
I2 (150 mol %)
a Reaction conditions: 1 (1.0 mmol), 2 (2.5 mmol), 3 (benzaldehyde)
(1.0 mmol), 4 (1.0 mmol), Lewis acid, NEt3 (1.5 mmol), CH3CN (5.0 mL).
b Reaction conditions: 1 (1.0 mmol), 2 (2.5 mmol), I2 heated at 100 °C
for 2 h then added 3 (benzaldehyde) (1.0 mmol), 4 (1.0 mmol), NEt3
(1.5 mmol) at room temperature in CH3CN (5.0 mL). c Isolated yield
after column chromatography.
(8) (a) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. A. J. Am. Chem. Soc.
2008, 130, 2448–2449. (b) Deng, G.; Li, C.-J. Org. Lett. 2009, 11, 1171–
1174. (c) Nakao, Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. J. Am.
Chem. Soc. 2010, 132, 13666–13668. (d) Tsai, C.-C.; Shih, W.-C.; Fang,
C.-H.; Li, C.-Y.; Ong, T.-G.; Yap, G. P. A. J. Am. Chem. Soc. 2010, 132,
11887–11889. (e) Huang, G.; Sun, H.; Qiu, X.; Jin, C.; Lin, C.; Shen, Y.;
Jiang, J.; Wang, L. Org. Lett. 2011, 13, 5224–5227. (f) Zhao, Y.; Chen, G.
Org. Lett. 2011, 13, 4850–4853. (g) Li, W.; Yin, Z.; Jiang, X.; Sun, P. J.
Org. Chem. 2011, 76, 8543–8548.
Thus we developed a one pot multicomponent protocol
via reaction of quinaldine, pyridine, aromatic aldehyde
and meldrum acid in the presence of iodine as Lewis acid
and triethylamine as base resulting in the formation of the
1-(2-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-2-aryl-
1-(quinolin-2-yl)ethyl)pyridinium (Scheme 1). The reac-
tion occurs via sp3 CꢀH bond activation of methyl of
(9) (a) Qian, B.; Guo, S.; Xia, C.; Huang, H. Adv. Synth. Catal. 2010,
352, 3195–3200. (b) Rueping, M.; Tolstoluzhsky, N. Org. Lett. 2011, 13,
1095–1097.
Org. Lett., Vol. 13, No. 24, 2011
6367