Journal of the American Chemical Society
COMMUNICATION
(14, 15) undergo disproportionation to the catalytically incom-
petent Ni(II)Cl2 and a Ni(II)Bn2 intermediate. The latter would
then afford the self-coupled product (dihydrostilbene) via re-
ductive elimination.
Yamamoto, A.; Shimizu, I. Chem. Lett. 2004, 33, 348. (g) Narahashi, H.;
Shimizu, I.; Yamamoto, A. J. Organomet. Chem. 2008, 693, 283. Pd-
catalyzed intermolecular Heck reaction of simple olefins was reported.
(6) To the best of our knowledge, there is only one example of
intermolecular benzylation of a simple olefin, where a styrene-type
product derived from olefin isomerization of the initially formed product
was obtained. See ref 5a.
(7) Alpha olefins are regarded as a chemical feedstock. Alpha Olefins
Applications Handbook; Lappin, G. R., Sauer, J. D., Eds.; Marcel Dekker:
New York, 1989.
(8) Cross-coupling reactions of benzyl halides (or their derivatives)
and alkenyl organometallics have been reported, although very few
methods to synthesize 1,1-disubstituted olefins were reported. For
selected examples, see:(a) Milstein, D.; Stille, J. K. J. Am. Chem. Soc.
1979, 101, 4992. (b) Kamlage, S.; Sefkow, M.; Peter, M. G. J. Org. Chem.
1999, 64, 2938. (c) Zhang, S.; Marshall, D.; Liebeskind, L. S. J. Org.
Chem. 1999, 64, 2796. (d) Pꢀerez, I.; Sestelo, J. P.; Sarandeses, L. A. J. Am.
Chem. Soc. 2001, 123, 4155. See also refs10a and 11.
(9) For initial reports describing branch selectivity in the ruthenium-
catalyzed intermolecular eneꢀyne coupling, see:(a) Trost, B. M.; Toste,
F. D. Tetrahedron Lett. 1999, 40, 7739–7743. (b) Trost, B. M.; Machacek,
M.; Schnaderbeck, M. J. Org. Lett. 2000, 2, 1761–1764. (c) Trost, B. M.;
Pinkerton, A. B.; Toste, F. D.; Sperrle, M. J. Am. Chem. Soc. 2001,
123, 12504–12509.
In conclusion, we have described a novel nickel-catalyzed
intermolecular benzylation of simple, widely available α-
olefins and ethylene. The functional group tolerance seen across
the broad range of substrates studied rivals that observed for
analogous reported palladium-catalyzed methods. The ob-
served selectivity favoring 1,1- versus 1,2-disubstituted olefins is
a unique and significant feature of this methodology. Addi-
tionally, the relatively low temperature at which these reactions
proceed (room temperature) is unique. The above study represents
an important advance in catalytic reactions using simple olefins
as substrates. We are currently investigating Et3SiOTf-free processes
as well as other types of catalytic reactions using simple olefins as
nucleophiles in carbonꢀcarbon bond-forming reactions.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures, spec-
b
tral data for all unknown compounds and CIF file for complex 14.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(10) For examples, see:(a) Miller, J. A.; Negishi, E.-i. Tetrahedron
Lett. 1984, 25, 5863. (b) Sabarre, A.; Love, J. Org. Lett. 2008, 10, 3941.
(11) For examples, see:(a) Taber, D. F.; Christos, T. E.; Neubert,
T. D.; Batra, D. J. Org. Chem. 1999, 64, 9673. (b) Tiefenbacher, K.;
Mulzer, J. Angew. Chem., Int. Ed. 2008, 47, 2548.
’ AUTHOR INFORMATION
(12) The combination of Et3N and a silyl triflate has been found in
our laboratory to mediate nickel-catalyzed reactions of simple olefins.
(a) Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 14194. (b) Ho,
C.-Y.; Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2006, 128, 5362. (c) Ho,
C.-Y.; Jamison, T. F. Angew. Chem., Int. Ed. 2007, 46, 782. (d) Matsubara,
R.; Jamison, T. F. J. Am. Chem. Soc. 2010, 132, 6880.
Corresponding Author
’ ACKNOWLEDGMENT
Support for this work was provided by the NIGMS (GM 72566
and GM 63755). We are grateful to Dr. Peter M€uller (MIT) and
Dr. Michael Takase (MIT) for X-ray diffraction analysis. R.M. thanks
JSPS Postdoctoral Fellowships for Research Abroad for financial
support and Dr. Akemi Moriyama (Children’s Hospital Boston,
deceased March 2011) for encouragement and support. A.C.G.
thanks the NIH for financial support.
(13) See Supporting Information for details.
(14) The discrepancy between the high (100%) conversion of the
benzyl bromide and the low (20%) yield of product is believed to be due
to nucleophilic displacement of the benzyl bromide by Et3N to form the
insoluble triethylammonium salt.
(15) GC or NMR yields are given for cases where product volatility
made isolation difficult.
(16) The successful use of m-CF3C6H4CH2Cl in a nickel(0)-cata-
lyzed cross-coupling reaction has been reported previously:(a) Lipshutz,
B. H.; Bulow, G.; Lowe, R. F.; Stevens, K. L. J. Am. Chem. Soc. 1996, 118,
5512.
(17) For experimental details and NMR spectra, see Supporting
Information.
(18) (a) Bartsch, E.; Dinjus, E.; Fischer, R.; Uhilig, E. Z. Anorg. Allg.
Chem. 1977, 433, 5. (b) Carmona, E.; Marín, J. M.; Paneque, M.; Poveda,
M. L. Organometallics 1987, 6, 1757. (c) Carmona, E.; Paneque, M.;
Poveda, M. L. Polyhedron 1989, 8, 285.
’ REFERENCES
(1) (a) Heck., R. F. J. Am. Chem. Soc. 1968, 90, 5518. (b) Mizoroki,
T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581.
(2) For reviews on the HeckꢀMizoroki reaction, see:(a) Br€ase, S.;
de Meijere, A. In Metal-Catalyzed Cross-Coupling Reactions; Diederich,
F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; Chapter 3. (b) Link,
J. T.; Overman, L. E. In Metal-Catalyzed Cross-Coupling Reactions;
Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; Chapter
6. (c) Br€ase, S.; de Meijere, A. In Metal-Catalyzed Cross-Coupling
Reactions, 2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH:
Weinheim, 2004; Chapter 5. (d) Beletskaya, I. P.; Cheprakov, A. V.
Chem. Rev. 2000, 100, 3009. (e) Dounay, A. B.; Overman, L. E. Chem.
Rev. 2003, 103, 2945–2963. (f) Oestreich, M. Top. Organomet. Chem.
2007, 24, 169–192. (g) Shibasaki, M.; Ohshima, T.; Itano, W. Sci. Synth.
2011, 3, 483–512. (h) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111,
1170–1214.
(19) Similar nickel complexes have been unambiguously character-
ized by X-ray diffraction analyses. (a) Ascenso, J. R.; Carrondo, M. A. A.
F. D. T.; Dias, A. R.; Gomes, P. T.; Piedade, M. F. M.; Romao, C. C.
ꢀ
Polyhedron 1989, 8, 2449. (b) Albers, I.; Alvarez, E.; Cꢀampora, J.; Maya,
C. M.; Palma, P.; Sꢀanchez, L. J.; Passaglia, E. J. Organomet. Chem. 2004,
689, 833. (c) Anderson, T. J.; Vicic, D. A. Organometallics 2004, 23, 623.
(3) In the context of this publication, “benzylation” refers to reaction
at the carbon attached to an aromatic ring.
(4) Heck, R. F.; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320.
(5) (a) Wu, G.-z.; Lamaty, F.; Negishi, E.-i. J. Org. Chem. 1989,
54, 2507. (b) Yi, P.; Zhuangyu, Z.; Hongwen, H. Synth. Commun. 1992,
22, 2019. (c) Yi, P.; Zhuangyu, Z.; Hongwen, H. Synthesis 1995, 245.
(d) Kumar, P. Org. Prep. Proced. Int. 1997, 29, 477. (e) Wang, L.; Pan, Y.;
Jiang, X.; Hu, H. Tetrahedron Lett. 2000, 41, 725. (f) Narahashi, H.;
19023
dx.doi.org/10.1021/ja209235d |J. Am. Chem. Soc. 2011, 133, 19020–19023