In summary, the phototriggered mass migration behavior was
examined using a PMMA film consisting of a photochromic
molecular motor. Upon irradiation with interfered beams of an
Ar+ laser at 364 nm, SRG is formed on the sample film by
photoinduced rotation. In the photo patterning procedure with a
photomask, the film also forms SRG. The knowledge obtained in
this work will greatly enhance the applicability of materials to the
exertion of phototriggered mass transfer systems based on the
specific photochromism of molecular rotation.
The authors wish to express their gratitude to Dr Atsushi
Shishido for permitting the use of the optical setup required
for formation of gratings. This work was partly supported by a
CLUSTER (second stage) of the Japan Ministry of Education,
Culture, Sports, Science.
Notes and references
1 (a) A. Natansohn and P. Rochon, Chem. Rev., 2002, 102, 4109;
(b) O. Oliveira Jr., J. Kumar, L. Li and S. K. Tripathy, in
Photoreactive Organic Thin Films, ed. Z. Sekkat and W. Knoll,
Academic Press, California, 2002, pp. 429–486; (c) K. Ichimura,
Chem. Rev., 2000, 100, 1847; (d) T. Ikeda, J. Mater. Chem., 2003,
13, 2037.
2 (a) T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi and A. Kanazawa,
Adv. Mater., 2003, 15, 201; (b) Y. Yu, M. Nakano and T. Ikeda,
Nature, 2003, 425, 145; (c) C. J. Barrett, J. Mamiya, K. G. Yager and
T. Ikeda, Soft Matter, 2007, 3, 1249; (d) M. Camacho-Lopez,
H. Finkelmann, P. Palffy and M. Shelley, Nat. Mater., 2004, 3, 307.
3 (a) H. Yu, T. Iyoda and T. Ikeda, J. Am. Chem. Soc., 2006,
128, 11010; (b) Y. Morikawa, T. Kondo, S. Nagaono and T. Seki,
Chem. Mater., 2007, 19, 1540.
4 (a) P. Rochon, E. Batalla and A. Natansohn, Appl. Phys. Lett.,
1995, 66, 136; (b) D. Y. Kim, S. K. Tripathy, L. Li and J. Kumar,
Appl. Phys. Lett., 1995, 66, 1166.
5 (a) C. J. Barrett, A. Natansohn and P. Rochon, J. Phys. Chem.,
1996, 100, 8836; (b) J. Kumar, L. Li, X. L. Jiang, D. Y. Kim,
T. S. Lee and S. Tripathy, Appl. Phys. Lett., 1998, 72, 2096;
(c) T. Pedersen, P. Johansen, N. Holme and P. Ramanujam, Phys.
Rev. Lett., 1998, 80, 89.
Fig. 4 Top view topographical AFM images and height profiles
along the line shown in the film after UV irradiation (365 nm;
300 mW cmÀ2) with a photomask at room temperature (a) and at 90 1C
(b). (c) Possible process of the SRG formation.
An SRG structure of azo-polymer is dependent on polarization
of writing beams,13 because an azobenzene chromophore is
aligned by polarization of light (Weigert effect).14 Therefore,
firstly, we measured polarized absorption spectra of a PMMA/
molecular motor film after irradiation of polarized UV light at
365 nm (see ESIw). This result shows no anisotropic property of
the molecular motor. Next, linearly polarized UV light was used
instead of non-polarized one for SRG formation. The depth of
SRG formed with linearly polarized UV light showed no
difference in one inscribed with non-polarized light.
6 H. Nakano, T. Takahashi, T. Tadota and Y. Shirota, Adv. Mater.,
2002, 14, 1157.
7 (a) H. Nakano, J. Phys. Chem. C, 2008, 112, 16042;
(b) L. M. Golenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk
and J. Stumpe, Langmuir, 2010, 26, 2214.
Based on the above data, the efficient mass migration may
occur when the photoirradiation is performed at higher
temperatures where the polymer adopts above Tg. Therefore,
our focus then shifted to the irradiation experiments using a
photomask (5 mm line and space patterns), which enables
smooth photo patterning procedures at higher temperatures.
Photo patterning with a photomask was achieved with the
visible line (365 nm) of an Hg lamp. Upon UV irradiation, a
slight grating formation (B10 nm) was observed at room
temperature, whereas an efficient and large mass transfer
(B150 nm) was observed at 90 1C (Fig. 4). These results
support the assumption that the mass migration was efficiently
caused by photoinduced molecular rotation above Tg. It is
noticed that the convex width was 10 mm, whereas the concave
width was 3 mm even in the same line and space widths of the
used photomask. We observed that the bright areas of strong
backlight formed from the photomask were expanded by
optical microscopy, which indicates that the bright areas
reflect the broader convex region than the concave one. This
result implies the mechanism of mass migration of the system.
That is, the lateral material transfer occurred from the shaded
areas to the irradiated areas (Fig. 4c).
8 (a) T. Ubukata, T. Seki and K. Ichimura, Adv. Mater., 2000,
12, 1675; (b) T. Yamamoto, A. Ohashi, S. Yoneyama, O. Tsutsumi,
A. Kanazawa, T. Shiono and T. Ikeda, J. Phys. Chem. B, 2001,
105, 2308; (c) S. Yoneyama, T. Yamamoto, O. Tsutsumi,
A. Kanazawa, T. Shiono and T. Ikeda, Macromolecules, 2002,
35, 8751; (d) K. Okano, A. Shishido, O. Tsutsumi and T. Ikeda,
J. Mater. Chem., 2005, 15, 3395.
9 T. Ubutaka, K. Takahashi and Y. Yokoyama, J. Phys. Org.
Chem., 2007, 20, 981.
10 T. Ubutaka, S. Yamaguchi and Y. Yokoyama, Chem. Lett., 2007, 1224.
11 A. Kikuchi, Y. Harada, M. Yagi, T. Ubutaka, Y. Yokoyama and
J. Abe, Chem. Commun., 2010, 46, 2262.
12 (a) N. Koumura, R. W. J. Zijistra, R. A. van Delden, N. Harada
and B. L. Feringa, Nature, 1999, 401, 152; (b) N. Koumura,
E. M. Geertsema, M. Gelder, A. Meetsma and B. L. Feringa,
J. Am. Chem. Soc., 2002, 124, 5037; (c) M. K. J. ter Wiel, R. A. van
Delden, A. Meetsma and B. L. Feringa, J. Am. Chem. Soc., 2003,
125, 15076; (d) J. Vicario, M. Walko, A. Meetsma and
B. L. Feringa, J. Am. Chem. Soc., 2006, 128, 5127; (e) M. Klok,
N. Boyle, M. T. Pryce, A. Meetsma, W. Browne and B. L. Feringa,
J. Am. Chem. Soc., 2008, 130, 10484; (f) G. T. London, G. Carroll,
L. T. Fernandez, M. Pollard, P. Rudolf and B. L. Feringa, Chem.
Commun., 2009, 1712; (g) T. Kudernac, N. Katsonis, W. Browne
and B. Feringa, J. Mater. Chem., 2009, 19, 7168.
13 N. Kawatsuki, E. Uchida and H. Ono, Appl. Phys. Lett., 2003,
83, 4544.
14 T. Weigert, Verh. Phys. Ges. Berlin, 1919, 21, 485.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 11891–11893 11893