due to TFA counterions.27 For III, the absence of a peak
around 1680 cmꢀ1 indicates that the b-sheets have a parallel
configuration. Samples I and IV show a peak at 1640 cmꢀ1
which is characteristic of either random coil or polyproline II
structure (as discussed elsewhere,30 the two are difficult to
distinguish based on standard FTIR spectroscopy alone).
Sample V shows mainly the 1640 cmꢀ1 peak, with a shoulder
indicating some contribution from b-sheet structures.
not observed for III, possibly contributing to the enhanced
fibrillisation properties of this peptide. These findings provide
insight into the self-assembly of this novel class of peptides.
The combination of g-amino acids with an Ab SRE motif
(KLVFF) provides a new class of fibrilisation inhibitor.
Notes and references
1 M. Goedert and M. G. Spillantini, Science, 2006, 314, 777.
2 I. W. Hamley, Angew. Chem., Int. Ed., 2007, 46, 8128.
3 G. B. Irvine, O. M. A. El-Agnaf, G. M. Shankar and D. M. Walsh,
Mol. Med., 2008, 14, 451.
The FTIR spectra assist in assignment of the CD spectra
(Fig. 3b), which are often difficult to interpret for short
peptides that do not exhibit classical a-helical or b-sheet
spectra. Consistent with the FTIR data, III shows a distinct
spectrum with a maximum just above 200 nm and a minimum
at 213 nm as expected for b-sheets. The spectra for all samples
(except I) also contain a peak or shoulder at 230 nm which is
ascribed to phenylalanine stacking interactions.31 The spectra
suggest random coil rather than PPII structure is predominant.
Turning to Fig. 3c,d, when concentration is increased to 1 wt%,
FTIR shows clear features of (parallel) b-sheets for all peptides
except I which retains a random coil conformation. Interestingly,
the CD data for samples at 1 wt% do not show clear b-sheet like
features, i.e. a minimum in the range 215–220 nm. We believe
that contributions from aromatic residues at the C and N termini
of the spectra predominate in these CD spectra.31–33 At still
higher concentration (2–3 wt%, comparable to that used in the
cryo-TEM studies), FTIR confirmed the presence of features
associated with b-sheets in the amide I0 region for all samples
(ESIw Fig. 5). A further interesting observation for several of
these compounds was the formation of self-supporting hydrogels
at sufficiently high concentration. ESIw Fig. 6 shows photographs
of representative systems. Formation of these hydrogels is
associated with b-sheet features in the FTIR spectra and suggests
they comprise a fibrillar network structure. These hydrogels
might be useful in the development of slow release systems.
In summary, we have discovered a promising lead compound
(III) containing two g-amino acid residues [(R)-(4-amino-
5-phenyl]pentanoyl and the D-amino acid version of KLVFF
(sometimes denoted klvff).10 This material shows a favorable
dose-response curve, reducing the cytotoxicity of Ab in a
physiologically relevant concentration range. In turn we show
by CD spectroscopic and ThT dye fluorescence studies that this
peptide binds to Ab. This led us to examine whether the
bioactivity of this peptide could be related to its self-assembly
propensity. Indeed, we find that peptide III forms b-sheet
structures at lower concentration than the other samples
examined. Another unanticipated finding was the splitting of
the b-strand spacing in the fibre XRD patterns of several of
the peptides, a feature we associate with the inability of the
N-terminal g-amino acid residues to fit into the regular
H-bonding pattern of the a-amino acid residues. This was
4 C. G. Glabe, Neurobiol. Aging, 2006, 27, 570.
5 G. M. Shankar, B. L. Bloodgood, M. Townsend, D. M. Walsh,
D. J. Selkoe and B. L. Sabatini, J. Neurosci., 2007, 27, 2866.
6 D. R. Howlett, in ‘Bioimaging in Neuroscience’, ed. P. A. Broderick,
D. N. Rahni and E. H. Kolodny, Totowa, NJ, 2005.
7 I. Melnikova, Nat. Rev. Drug Discovery, 2007, 6, 341.
8 M. N. Sabbagh, Am. J. Ger. Pharma., 2009, 7, 167.
9 L. Mucke, Nature, 2009, 461, 895.
10 M. A. Findeis, G. M. Musso and C. C. Arico-Muendel, et al.,
Biochemistry, 1999, 38, 6791.
11 T. L. Lowe, A. Strzelec, L. L. Kiessling and R. M. Murphy,
Biochemistry, 2001, 40, 7882.
12 T. J. Gibson and R. M. Murphy, Biochemistry, 2005, 44, 8898.
13 D. J. Gordon, R. Tappe and S. C. Meredith, J. Pept. Res., 2008,
60, 37.
14 N. Kokkoni, K. Stott, H. Amijee, J. M. Mason and A. J. Doig,
Biochemistry, 2006, 45, 9906.
15 B. M. Austen, K. E. Paleologou, S. A. E. Ali, M. M. Qureshi,
D. Allsop and O. M. A. El-Agnaf, Biochemistry, 2008, 47, 1984.
16 C. Soto, E. M. Sigurdsson, L. Morelli, R. A. Kumar,
E. M. Castano and B. Frangione, Nat. Med., 1998, 4, 822.
17 P. Rzepecki and T. Schrader, J. Am. Chem. Soc., 2005, 127, 3016.
18 V. Castelletto, I. W. Hamley, T. Lim, M. de Tullio and
E. M. Castano, J. Pept. Sci., 2010, 16, 443.
19 J. Madine, X. Wang, D. R. Brown and D. A. Middleton, Chem-
BioChem, 2009, 10, 1982.
20 D. Seebach, A. K. Beck and D. J. Bierbaum, Chem. Biodiversity,
2004, 1, 1111.
21 M. Hagihara, N. J. Anthony, T. J. Stout, J. Clardy and
S. L. Schreiber, J. Am. Chem. Soc., 1992, 114, 6568.
22 D. Seebach, M. Brenner, M. Rueping and B. Jaun, Chem.–Eur. J.,
2002, 8, 573.
23 T. Sawada and S. H. Gellman, J. Am. Chem. Soc., 2011, 133, 7336.
24 K. Morris and L. Serpell, Chem. Soc. Rev., 2010, 39, 3445.
25 V. Castelletto, I. W. Hamley, R. A. Hule and D. J. Pochan, Angew.
Chem., Int. Ed. Engl., 2009, 48, 2317.
26 V. Castelletto, I. W. Hamley and C. Cenker, et al., J. Phys. Chem.
B, 2011, 115, 2107.
27 H. Inouye, P. E. Fraser and D. A. Kirschner, Biophys. J., 1993, 64, 502.
28 M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys and
C. C. F. Blake, J. Mol. Biol., 1997, 273, 729.
29 T. E. Creighton, ‘Proteins. Structures and Molecular Properties’,
W. H. Freeman, 1993.
30 T. A. Keiderling and Q. Xu, Adv. Protein Chem., 2002, 62, 111.
31 I. W. Hamley, D. R. Nutt and G. D. Brown, et al., J. Phys. Chem.
B, 2010, 114, 940.
32 M. J. Krysmann, V. Castelletto, A. Kelarakis, I. W. Hamley,
R. A. Hule and D. J. Pochan, Biochemistry, 2008, 47, 4597.
33 I. W. Hamley, V. Castelletto and C. M. Moulton, et al., Macromol.
Biosci., 2010, 10, 40.
c
12472 Chem. Commun., 2011, 47, 12470–12472
This journal is The Royal Society of Chemistry 2011