to enhanced magnetic nonequivalence upon anion binding to the
thiourea moiety. It hence follows that the rigidity around the
chiral a-carbon centre is increased, which nicely coincides with
the formation of the hydrogen bonding network in the anion
binding complex (Scheme 2). Taking together the observations of
chirality transfer from a-carbon to the thiourea moiety in the
anion binding complex (Fig. 1 and 3) and the anion binding
induced rigidity increase around the a-carbon (Fig. 2 and
Fig. S5 (ESIw)), it appears that a mutual communication between
acetate anion and chiral a-carbon in PLTU is established in the
PLTU–AcOꢀ binding complex.
This work has been supported by the NSFC (20835005 and
J1030415) and the MOST of China (2011CB910403). Professor
Hui Zhang of Xiamen University is appreciated for her
instructive discussions on the CD spectra.
Notes and references
1 For most recent reviews see (a) Z. G. Zhang and P. R. Schreiner,
Chem. Soc. Rev., 2009, 38, 1187–1198; (b) Y. Sohtome, N. Takemura,
K. Takada, R. Takagi, T. Iguchi and K. Nagasawa, Chem.–Asian J.,
2007, 2, 1150–1160; (c) A. G. Doyle and E. N. Jacobsen, Chem. Rev.,
2007, 107, 5713–5743; For recent examples of organocatalysis see:
(d) B. Tan, N. R. Candeias and C. F. Barbas III, Nat. Chem., 2011, 3,
473–477; (e) J. Wang and B. L. Feringa, Science, 2011, 331, 1429–1432;
(f) J. Luo, H. Wang, X. Han, L.-W. Xu, J. Kwiatkowski, K.-W. Huang
and Y. Lu, Angew. Chem., Int. Ed., 2011, 50, 1861–1864; (g) Q. Guo,
M. Bhanushali and C.-G. Zhao, Angew. Chem., Int. Ed., 2010, 49,
9460–9464; (h) H. Uehara, R. Imashiro, G. Hernandez-Torres and
C. F. Barbas III, Proc. Natl. Acad. Sci. U. S. A., 2010, 107,
20672–20677; (i) Y. Sohtome, S. Tanaka, K. Tanaka, T. Yamaguchi
and K. Nagasawa, Angew. Chem., Int. Ed., 2010, 49, 9254–9257;
(j) R. Imashiro, H. Uehara and C. F. Barbas III, Org. Lett., 2010,
12, 5250–5253; (k) X.-F. Wang, Q.-L. Hua, Y. Cheng, X.-L. An,
Q.-Q. Yang, J.-R. Chen and W.-J. Xiao, Angew. Chem., Int. Ed., 2010,
49, 8379–8383; (l) X.-Q. Dong, H.-L. Teng, M.-C. Tong, H. Huang,
H. Y. Tao and C.-J. Wang, Chem. Commun., 2010, 46, 6840–6842;
(m) R. P. Singh, B. M. Foxman and L. Deng, J. Am. Chem. Soc., 2010,
132, 9558–9560; (n) A. R. Brown, W.-H. Kuo and E. N. Jacobsen,
J. Am. Chem. Soc., 2010, 132, 9286–9288; (o) S. J. Zuend,
M. P. Coughlin, M. P. Lalonde and E. N. Jacobsen, Nature, 2009,
461, 968–971; For recent examples of kinetic resolution, see:
(p) E. G. Klauber, C. K. De, T. K. Shah and D. Seidel, J. Am. Chem.
Soc., 2010, 132, 13624–13626; (q) C. K. De, E. G. Klauber and
D. Seidel, J. Am. Chem. Soc., 2009, 131, 17060–17061.
2 (a) J. L. Sessler, P. A. Gale and W.-S. Cho, Anion
Receptor Chemistry, RSC Publishing, 2006; (b) P. A. Gale, Chem.
Commun., 2011, 47, 82–86; (c) P. A. Gale, Chem. Soc. Rev., 2010, 39,
3746–3771; (d) R. M. Duke, E. B. Veale, F. M. Pfeffer, P. E. Kruger
and T. Gunnlaugsson, Chem. Soc. Rev., 2010, 39, 3936–3953;
(e) A.-F. Li, J.-H. Wang, F. Wang and Y.-B. Jiang, Chem. Soc.
Rev., 2010, 39, 3729–3745; (f) T. Gunnlaugsson, M. Glynn,
G. M. Tocci, P. E. Kruger and F. M. Pfeffer, Coord. Chem. Rev.,
2006, 250, 3094–3117; (g) V. Amendola, D. Esteban-Gomez,
L. Fabbrizzi and M. Licchelli, Acc. Chem. Res., 2006, 39,
343–353; (h) P. A. Gale, Acc. Chem. Res., 2006, 39, 465–475.
3 (a) F.-Y. Wu, Z. Li, Z.-C. Wen, N. Zhou, Y.-F. Zhao and
Y.-B. Jiang, Org. Lett., 2002, 4, 3203–3205; (b) L. Nie, Z. Li,
J. Han, X. Zhang, R. Yang, W.-X. Liu, F.-Y. Wu, J.-W. Xie,
Y.-F. Zhao and Y.-B. Jiang, J. Org. Chem., 2004, 69, 6449–6454;
(c) F.-Y. Wu, Z. Li, L. Guo, X. Wang, M.-H. Lin, Y.-F. Zhao and
Y.-B. Jiang, Org. Biomol. Chem., 2006, 4, 624–630; (d) W.-X. Liu
and Y.-B. Jiang, Org. Biomol. Chem., 2007, 5, 1771–1775;
(e) W.-X. Liu and Y.-B. Jiang, J. Org. Chem., 2008, 73,
1124–1127; (f) Z. Li, Z. Liu, Q.-X. Liao, Z.-B. Wei, L.-S. Long
and Y.-B. Jiang, C. R. Chim., 2008, 11, 67–72; (g) R. Yang,
W.-X. Liu, H. Shen, H.-H. Huang and Y.-B. Jiang, J. Phys. Chem.
B, 2008, 112, 5105–5110; (h) W.-X. Liu, R. Yang, A.-F. Li, Z. Li,
Y.-F. Gao, X.-X. Luo, Y.-B. Ruan and Y.-B. Jiang, Org. Biomol.
Chem., 2009, 7, 4021–4028; (i) Q.-Q. Jiang, B. Darhkijav, H. Liu,
F. Wang, Z. Li and Y.-B. Jiang, Chem.–Asian J., 2010, 5, 543–549.
4 (a) H. Maekawa, G. Ballano, C. Toniolo and N.-H. Ge, J. Phys.
Chem. B, 2011, 115, 5168–5182; (b) P. G. Vasudev, S. Chatterjee,
N. Shamala and P. Balaram, Chem. Rev., 2011, 111, 657–687.
5 (a) N. Berova, K. Nakanishi and R. W. Woody, Circular Dichromism,
Principles and Applications, Wiley-VCH, New York, 2nd edn, 2000;
(b) N. Berova, L. D. Bari and G. Pescitelli, Chem. Soc. Rev., 2007, 36,
914–931.
Referring to the intramolecular hydrogen bonding (IHB) in
peptide backbones bearing repeating 2,2-dimethylglycine residues
(AiB),4,6 a 5-membered ring IHB between a-NMe2 and amido
–NH proton (dashed line in L-/D-PLTU, Scheme 2) was assumed
possible. We hence examined whether this IHB, if exists, may
facilitate chirality transfer. Calculations do suggest such an IHB
(Scheme S2, ESIw), which is also supported by NMR data of
L-PLTU in DMSO-d6/CD3CN binary solvents. It was observed
that while the signals of the thioureido –NHs were sensitive to the
solvent composition, that of the amido –NH proton was less
sensitive (Fig. S6, ESIw), suggesting that an IHB involves this
proton.3e In order to probe the role of this IHB in chirality transfer,
we prepared two control compounds of L-PLTU in that the amine
group in the L-phenylalanine residue was derived into benzoyl-
amide or replaced with a methyl group (L-BPTU and L-PATU,
respectively, Scheme 2). With L-BPTU a ‘‘PhCQOꢁꢁꢁHNC(O)’’
7-membered ring IHB (the g-turn7) was concluded from its COSY
and NOESY spectra and the –NH chemical shifts in DMSO-d6/
CD3CN as a function of solvent composition (Figs. S7–S9, ESIw).
The fact that, while the absorption spectrum of BPTU in CH3CN
underwent a similar variation in the presence of acetate anion, the
CD spectrum showed a different variation profile (Fig. S10, ESIw)
from that of PLTU (Fig. 2) means that the 5-membered ring IHB
in PLTU indeed plays a role in the chirality transfer in its anion
binding complex. This was further supported by the observation
that the CD spectrum of L-PATU, in which no such an IHB is
present, underwent a variation profile (Fig. S11, ESIw) very
different from those observed with L-PLTU (Fig. 1) and L-BPTU
(Fig. S10, ESIw), despite the fact that the absorption spectra varied
similarly (Fig. 1a and Figs. S10a and S11a (ESIw)).
In summary, we developed a new kind of chiral thioureas,
the a-amino acid phenylalanine based N-amidothioureas,
L-/D-PLTUs, in which the a-carbon chiral center is by 2 atoms
or 3 chemical bonds away from the thiourea moiety, yet upon
acetate anion binding the chirality was transferred to the
thiourea moiety and the bound anion. We showed that a
mutual communication between the thiourea moiety and the
chiral center was established via anion hydrogen-bonding to
the thiourea moiety. We found that the 5-membered ring IHB
between the a-NMe2 and the amido –NH proton in PLTUs
was important for the efficient remote chirality transfer. Since
these chiral N-amidothioureas can be easily made available
from natural a-amino acids of diverse structural and func-
tional characters, they would be of potential significance in
enantioselective organocatalysis and other functions as
well. Extended investigations into the peptide based
N-amidothioureas would allow long-distance chirality transfer
to be evaluated.
6 (a) J. Clayden, A. Castellanos, J. Sola and G. A. Morris, Angew.
Chem., Int. Ed., 2009, 48, 5962–5965; (b) J. Sola, M. Helliwell and
J. Clayden, J. Am. Chem. Soc., 2010, 132, 4548–4549.
7 E. J. Cocinero, P. C¸ arc¸ abal, T. D. Vaden, J. P. Simons and
B. G. Davis, Nature, 2011, 469, 76–80.
c
11786 Chem. Commun., 2011, 47, 11784–11786
This journal is The Royal Society of Chemistry 2011