Pure Appl. Chem., 2010, 82, 1353; (c) S. Perreault and T. Rovis,
Chem. Soc. Rev., 2009, 38, 3149.
6 (a) T. K. Hyster and T. Rovis, J. Am. Chem. Soc., 2010, 132, 10565;
(b) T. K. Hyster and T. Rovis, Chem. Sci., 2011, 2, 1606.
7 (a) N. Guimond, S. I. Gorelsky and K. Fagnou, J. Am. Chem. Soc.,
2011, 133, 6449; (b) N. Guimond, C. Gouliaras and K. Fagnou,
J. Am. Chem. Soc., 2010, 132, 6908; (c) S. Mochida, N. Umeda,
K. Hirano, T. Satoh and M. Miura, Chem. Lett., 2010, 39, 744;
(d) Y. Su, M. Zhao, K. Han, G. Song and X. Li, Org. Lett., 2010,
12, 5462; (e) G. Song, D. Chen, C.-L. Pan, R. H. Crabtree and
X. Li, J. Org. Chem., 2010, 75, 7487.
8 For a review, see; (a) T. Satoh and M. Miura, Chem.–Eur. J., 2010,
16, 11212; (b) J. Wencel-Delord, T. Droge, F. Liu and F. Glorius,
Chem. Soc. Rev., 2011, 40, 4740.
¨
9 (a) D. R. Stuart, P. Alsabeh, M. Kuhn and K. Fagnou, J. Am.
Chem. Soc., 2010, 132, 18326; (b) D. R. Stuart, M. Bertrand-
Laperle, K. M. N. Burgess and K. Fagnou, J. Am. Chem. Soc.,
2008, 130, 16474; (c) J. Chen, Q. Pang, Y. Sun and X. Li, J. Org.
Chem., 2011, 76, 3523; (d) J. Chen, G. Song, C.-L. Pan and X. Li,
Org. Lett., 2010, 12, 5426; (e) M. P. Huestis, L. Chan, D. R. Stuart
and K. Fagnou, Angew. Chem., Int. Ed., 2011, 50, 1338.
10 (a) S. Rakshit, P. W. Patureau and F. Glorius, J. Am. Chem. Soc.,
2010, 132, 9585; (b) Ref. 9a.
11 (a) N. Guimond and K. Fagnou, J. Am. Chem. Soc., 2009,
131, 12050; (b) P. C. Too, Y.-F. Wang and S. Chiba, Org. Lett.,
2010, 12, 5688; (c) P. C. Too, S. H. Chua, S. H. Wong and
S. Chiba, J. Org. Chem., 2011, 76, 6159; (d) X. Zhang, D. Chen,
M. Zhao, J. Xhao, A. Jia and X. Li, Adv. Synth. Catal., 2011,
353, 719; (e) Y.-F. Wang, K. K. Toh, J.-Y. Lee and S. Chiba,
Angew. Chem., Int. Ed., 2011, 50, 5927; (f) T. Fukutani, N. Umeda,
K. Hirano, T. Satoh and M. Miura, Chem. Commun., 2009,
74, 5141; (g) K. Morimoto, K. Hirano, T. Satoh and M. Miura,
Chem. Lett., 2011, 40, 600.
Scheme 2
the intermediate derived from an isoquinoline. Upon subjection of
the 6p intermediate to our standard reaction conditions, we did
not observe any pyridine product, suggesting that this reaction
does not occur via a 6p-electrocyclization (see the ESIw).
A possible product of this reaction is a polysubstituted
pyridine N-oxide. This species could oxidize Rh(I) to Rh(III)
under the reaction conditions and provide the desired product.
When the reaction is conducted in the presence of 4-phenyl
pyridine N-oxide, none of the reduced 4-phenyl pyridine is
observed, suggesting that if the reductive elimination path
is occurring, inner sphere oxidation is inherently rapid and
the dominant pathway for reoxidizing Rh. Alternately, and
perhaps more reasonably, N–O bond reduction occurs in
concert with the C–N bond-forming event, as proposed by
Guimond/Fagnou.7b
12 (a) S. Rakshit, C. Grohmann, T. Besset and F. Glorius, J. Am.
Chem. Soc., 2011, 133, 2350; (b) Ref. 7a.
13 For select examples, see: (a) S. R. Neufeldt and M. S. Sanford,
Org. Lett., 2010, 12, 532; (b) L. V. Desai, K. L. Hull and M. S.
Sanford, J. Am. Chem. Soc., 2004, 126, 9542; (c) L. V. Desai,
H. A. Malik and M. S. Sanford, Org. Lett., 2006, 8, 1141;
(d) A. S. Tsai, M. Brasse, R. G. Bergman and J. A. Ellman,
Org. Lett., 2011, 13, 540; (e) C.-L. Sun, N. Liu, B.-J. Li,
D.-G. Yu, Y. Wang and Z.-J. Shi, Org. Lett., 2010, 12, 184; For
examples of olefination with Rh(III) catalysts, see: (f) S. Mochida,
K. Hirano, T. Satoh and M. Miura, J. Org. Chem., 2011, 76, 3024;
(g) T. Besset, N. Kuhl, F. W. Patureau and F. Glorius, Chem.–Eur. J.,
2011, 17, 7167.
14 For a review of, see: (a) F. W. Patureau and F. Glorius, Angew.
Chem., Int. Ed., 2011, 50, 1977; For select examples see: (b) J. Wu,
X. Cui, L. Chen, G. Jiang and Y. Wu, J. Am. Chem. Soc., 2009,
131, 13888; (c) E. J. Yoo, S. Ma, T.-S. Mei, K. S. L. Chan and
J.-Q. Yu, J. Am. Chem. Soc., 2011, 133, 7652; (d) T.-S. Mei,
X. Wang and J.-Q. Yu, J. Am. Chem. Soc., 2009, 131, 10806.
15 (a) H. Tsutsui and K. Narasaka, Chem. Lett., 1999, 45; (b) H. Tsutsui,
M. Kitamura and K. Narasaka, Bull. Chem. Soc. Jpn., 2002, 75, 1451;
(c) M. Kitamura and K. Narasaka, Chem. Rec., 2002, 2, 268;
(d) H. Tsutsui and K. Narasaka, Chem. Lett., 2001, 526.
With these insights in hand, we propose the following
mechanism. The monomeric rhodium catalyst coordinates to
the basic nitrogen of the oxime A. A turnover limiting CꢀH
activation event occurs, presumably facilitated by carbonate,
to provide a 5-membered rhodacycle B. This metallacycle can
insert an equivalent of alkyne to generate a 7-membered
metallacycle, which undergoes a CꢀN bond formation with
concomitant N–O bond cleavage C.
We thank NIGMS (GM80442) for support and Johnson
Matthey for a loan of Rh salts. We thank Marie Trujillo
(CSU) for early experiments.
Notes and references
1 (a) L. A. Mitscher, Chem. Rev., 2005, 105, 559; (b) M. Torres,
S. Gil and M. Parra, Curr. Org. Chem., 2005, 9, 1757; (c) G. Jones,
in Comprehensive Heterocyclic Chemistry II, ed. A. R. Katritzky,
C. W. Rees, E. F. V. Scriven and A. McKillop, Pergamon, Oxford,
1996, vol. 5, p. 167; (d) G. D. Henry, Tetrahedron, 2004, 60, 6043;
(e) J. P. Michael, Nat. Prod. Rep., 2005, 104, 3787.
2 S. D. Roughley and A. M. Jordan, J. Med. Chem., 2011, 54, 3451.
3 (a) M. D. Hill, Chem.–Eur. J., 2010, 16, 12052; Select examples:
(b) M. Movassaghi, M. D. Hill and O. K. Ahmad, J. Am. Chem. Soc.,
2007, 129, 10096; (c) M. Movassaghi and M. D. Hill, J. Am.
Chem. Soc., 2006, 128, 4592.
16 Y. Tan and J. F. Hartwig, J. Am. Chem. Soc., 2010, 132, 3676.
17 Glorius has used internal oxidants in Rh(III) catalysts; see:
(a) Ref. 10a; (b) J. Willwacher, S. Rakshit and F. Glorius, Org.
Biomol. Chem., 2011, 9, 4736.
18 (a) K. Parthasarathy, M. Jeganmohan and C.-H. Cheng, Org.
Lett., 2008, 10, 325; (b) K. Parthasarathy and C.-H. Cheng, J. Org.
Chem., 2009, 74, 9359.
4 (a) B. R. D’Souza, T. K. Lane and J. Louie, Org. Lett., 2011, 13, 2936;
(b) J. R. Manning and H. M. L. Davies, J. Am. Chem. Soc., 2008,
19 During the preparation of this manuscript, Chiba, Guimond/
Fagnou, and Li each demonstrated that oximes may be used for
the Rh(III)-catalyzed synthesis of isoquinolines; see: ref. 7a, 10b–d.
20 Similar results were observed with aryl oximes; see: ref. 7a.
21 D. Lapointe and K. Fagnou, Chem. Lett., 2010, 39, 1118.
22 More sterically encumbering groups at the b-position resulted in
low yields.
130, 8602; (c) J. Barluenga, M. A. Ferna
Garcıa and E. Aguilar, J. Am. Chem. Soc., 2008, 130, 2764;
ndez-Rodrıguez, P. Garcıa-
´ ´ ´
´
(d) J. Dash, T. Lechel and H.-U. Reissig, Org. Lett., 2007,
9, 5541; (e) B. M. Trost and A. C. Gutierrez, Org. Lett., 2007,
9, 1473; (f) Y.-F. Wang and S. Chiba, J. Am. Chem. Soc., 2009,
131, 12570; (g) K. M. Oberg, E. E. Lee and T. Rovis, Tetrahedron,
2009, 65, 5056.
23 Aldoxime isomerized to the primary amide.
24 T. Fukutani, K. Hirano, T. Satoh and M. Miura, J. Org. Chem.,
2011, 76, 2867.
25 B. M. Trost and A. C. Gutierrez, Org. Lett., 2007, 9, 1473.
5 (a) K. M. Oberg and T. Rovis, J. Am. Chem. Soc., 2011, 133, 4785;
(b) R. K. Friedman, K. M. Oberg, D. M. Dalton and T. Rovis,
c
11848 Chem. Commun., 2011, 47, 11846–11848
This journal is The Royal Society of Chemistry 2011