Journal of the American Chemical Society
COMMUNICATION
hydrolyzed because of both steric accessibility and its increased
electrophilicity. Treatment of this intermediate with Cs2CO3 in
EtOH cleanly and selectively cleaved the cyclic carbamate with-
out hydrolysis of the tert-butyl or primary carbamates.19 The
release of N1 resulted in the final five-membered-ring annulation
to give 11.
Deprotection of the remaining Boc groups in 11 with 1:1
TFA/CH2Cl2 cleanly gave β-saxitoxinol. Alternatively, oxidation
of the secondary alcohol could be accomplished with DessÀ
Martin periodinane to give the corresponding ketone. This
intermediate proved to be relatively unstable but could be im-
mediately deprotected to give (+)-saxitoxin in 81% yield over the
final two steps.20
This strategy delivered (+)-saxitoxin in 14 steps from com-
mercially available N-Boc-L-serine methyl ester, which is compar-
able to Du Bois’ second-generation synthesis.7b The approach
is highlighted by a regio- and stereoselective one-pot Ag(I)-
catalyzed cyclization cascade that generates two CÀN bonds,
one CÀO bond, and three rings in a single synthetic manipula-
tion. This work is poised to complement that of others in deliver-
ing new small-molecule modulators of ion channel function.
(5) Tanino, H.; Nakata, T.; Kaneko, T.; Kishi, Y. J. Am. Chem. Soc.
1977, 99, 2818.
(6) Jacobi, P. A.; Martinelli, M. J.; Polanc, S. J. Am. Chem. Soc. 1984,
106, 5594.
(7) (a) Fleming, J. J.; Du Bois, J. J. Am. Chem. Soc. 2006, 128, 3926.
(b) Fleming, J. J.; McReynolds, M. D.; Du Bois, J. J. Am. Chem. Soc. 2007,
129, 9964.
(8) Iwamoto, O.; Shinohara, R.; Nagasawa, K. Chem.—Asian. J. 2009,
4, 277.
(9) Sawayama, Y.; Nishikawa, T. Synlett 2011, 651.
(10) (a) Giles, R. L.; Sullivan, J. D.; Steiner, A. M.; Looper, R. E.
Angew. Chem., Int. Ed. 2009, 48, 3162. (b) Gainer, M. J.; Bennet, N. R.;
Takahashi, Y.; Looper, R. E. Angew. Chem., Int. Ed. 2011, 50, 684.
(11) For other methods for preparing cyclic guanidines, see:
(a) Overman, L. E.; Rabinowitz, M. H. J. Org. Chem. 1993, 58, 3235.
(b) Cohen, F.; Overman, L. E.; Sakata, S. K. L. Org. Lett. 1999, 1, 2169.
(c) Kim, M.; Vulcahy, J. V.; Espino, C. G.; Du Bois, J. Org. Lett 2006,
8, 1073. (d) Snider, B. B.; Xie, C. Y. Tetrahedron Lett. 1998, 39, 7021.
(e) Arnold, M. A.; Day, K. A.; Durꢀon, S. G.; Gin, D. Y. J. Am. Chem. Soc.
2006, 128, 13255.
(12) (a) Merino, P.; Lanaspa, A.; Merchan, F. L.; Tejero, T. Tetra-
hedron: Asymmetry 1998, 9, 629. (b) Merino, P.; Franco, S.; Merchan,
F. L.; Tejero, T. J. Org. Chem. 1998, 63, 5627.
(13) Dhavale, D. D.; Genntilucci, L.; Piazza, M. G.; Trombini, C.
Liebigs Ann. Chem. 1992, 1289.
’ ASSOCIATED CONTENT
(14) Choi, Y.-M.; Kim, M. W. U.S. Pat. Appl. 20050080268A1, 2005.
(15) Ermolatev, D.; Bariwal, J.; Steenackers, H.; De Keersmaecker,
S.; Van der Eycken, E. Angew. Chem., Int. Ed. 2010, 49, 9465.
(16) Model compound 13 was prepared by the AgOAc-catalyzed
cyclization of 12. See the Supporting Information for details and
comparisons of 1H NMR spectra.
S
Supporting Information. Experimental procedures and
b
analytical data for all new compounds, including H and 13C
1
NMR spectra. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
(17) (a) Woodward, R. B.; Brutcher, F. V., Jr. J. Am. Chem. Soc. 1958,
80, 209–211. (b) Kang, S. H.; Ryu, D. H. Tetrahedron Lett. 1997, 38, 607.
(c) Kobayashi, S.; Isobe, T.; Ohno, M. Tetrahedron Lett. 1984, 25, 5079.
(18) The stereochemistry of the CÀO bond at C12 was not
unambiguously assigned but was inferred by the ultimate conversion
of this intermediate to β-saxitoxinol.
(19) Kunieda, T.; Ishizuka, T. Tetrahedron Lett. 1987, 28, 4185.
(20) Both synthetically prepared saxitoxin and β-saxitoxinol had
physical properties in agreement with those reported for the natural
products (see refs 4a and 7b).
This work is dedicated to the memory of Prof. David Y. Gin.
We are grateful to the National Institutes of Health, National
Institute of General Medical Sciences (R01 GM 090082) for
financial support of this research. We thank Dr. Jim Muller for
help with mass spectral analysis and Prof. Jon Rainier and Prof.
Matt Sigman for insightful discussions.
’ REFERENCES
(1) (a) Novakovic, S. D.; Eglen, R. M.; Hunter, J. C. Trends Neurosci.
2001, 24, 473. (b) Lai, H. C.; Jan, L. Y. Nat. Rev. Neurosci. 2006, 7, 548.
(c) Rush, A. M.; Cummins, T. R.; Waxman, S. G. J. Physiol. 2007, 579, 1.
(2) (a) Shimizu, Y.; Hsu, C. P.; Fallon, W. E.; Oshima, Y.; Miura, Y.;
Nakanishi, K. J. Am. Chem. Soc. 1978, 100, 67. (b) Llewellyn, L. E. Nat.
Prod. Rep. 2006, 23, 200.
(3) (a) Schantz, E. J. Ann. N.Y. Acad. Sci. 1986, 479, 15. (b) Tucker,
J. B. Int. Secur. 2002, 27, 107.
(4) For derivatives and analogues of saxitoxin, see: (a) Koehn, F. E.;
Ghazarossian, V. E.; Schantz, E. J.; Schnoes, H. K.; Strong, F. M. Bioorg.
Chem. 1981, 10, 412. (b) Andresen, B. M.; Du Bois, J. J. Am. Chem. Soc.
2009, 131, 12524. (c) Mao, H.; Fieber, L. A.; Gawley, R. E. ACS Med.
Chem. Lett. 2010, 1, 135. (d) Shinohara, R.; Akimoto, T.; Iwamoto,
O.; Hirokawa, T.; Yotsu-Yamashita, M.; Yamaoka, K.; Nagasawa, K.
Chem.—Eur. J. 2011, 17, 12144. (e) Mulcahy, J. V.; Du Bois, J. J. Am.
Chem. Soc. 2008, 130, 12630. (f) Iwamoto, O.; Nagasawa, K. Org. Lett.
2010, 12, 2150. (g) Sawayama, Y.; Nishikawa, T. Angew. Chem., Int. Ed.
2011, 50, 7176.
20174
dx.doi.org/10.1021/ja2098063 |J. Am. Chem. Soc. 2011, 133, 20172–20174