S. Matsunaga, N. Endo, W. Mori
FULL PAPER
[4]
[5]
a) K. S. Min, M. P. Suh, J. Am. Chem. Soc. 2000, 122, 6834–
6840; b) H. J. Choi, M. P. Suh, Inorg. Chem. 2003, 42, 1151–
filtered and washed with H2O. After drying under vacuum, the por-
phyrin complex ZnTCPEP-H4 was obtained in quantitative yield
as a greenish-purple solid. H NMR (400 MHz, CDCl3): δ = 9.37
(s, 8 H, β), 8.18 (dd, J = 20.4 and 8.18 Hz, 16 H, Ph-ortho and
-meta) ppm. MS (MALDI-TOF+): calcd. for C56H28N4O8Zn [M+]
948.12; found 947.59.
1
1157; c) M. Dinca, J. R. Long, J. Am. Chem. Soc. 2007, 129,
˘
11172–11176; d) S. Yang, X. Lin, A. J. Blake, K. M. Thomas, P.
Hubberstey, N. R. Champness, M. Schröder, Chem. Commun.
2008, 6108–6110; e) F. Nouar, J. Eckert, J. F. Eubank, P. For-
ster, M. Eddaoudi, J. Am. Chem. Soc. 2009, 131, 2864–2870.
a) M. Fujita, Y. J. Kwon, S. Washizu, K. Ogura, J. Am. Chem.
Soc. 1994, 116, 1151–1152; b) K. Schlichte, T. Kratzke, S. Kas-
kel, Microporous Mesoporous Mater. 2004, 73, 81–88; c) C.-D.
Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127,
8940–8941; d) L. Alaerts, E. Séguin, H. Poelman, F. Thibault-
Starzyk, P. A. Jacobs, D. E. D. Vos, Chem. Eur. J. 2006, 12,
[Zn4(μ3-OH)2(H2O)2(ZnTCPEP-H)2(DABCO)2]·2DMF·10.5H2O
(Zn4·ZnTCPEP·DABCO): A mixture of Zn(NO3)·6H2O (157 mg,
0.526 mmol), ZnTCPEP-H4 (100 mg, 0.105 mmol), and DABCO
(24 mg, 0.210 mmol) was dissolved in DMF/EtOH/H2O (70:4:1)
(75 mL) in a Teflon-lined stainless steel vessel. One drop of HCl
(1 m) was added, and the solution was heated to 80 °C for 48 h.
The resultant green block crystals were filtered, washed with DMF,
and dried under vacuum to give [Zn4(μ3-OH)2(H2O)2(ZnTCPEP-
H)2 (DABCO)2 ]·2DMF·10.5H2 O (146 mg, 99.8 % yield).
C130H115N14O32.5Zn6 (2785.84): calcd. C 56.05, H 4.16, N 7.04;
7353–7363; e) S. Horike, M. Dinca, K. Tamaki, J. R. Long, J.
˘
Am. Chem. Soc. 2008, 130, 5854–5855; f) Y. K. Hwang, D.-Y.
Hong, J.-S. Chang, S. H. Jhung, Y.-K. Seo, J. Kim, A. Vimont,
M. Daturi, C. Serre, G. Férey, Angew. Chem. Int. Ed. 2008, 47,
4144–4148; g) A. Corma, M. Iglesias, F. X. Llabrés i Xamena,
F. Sánchez, Chem. Eur. J. 2010, 16, 9789–9795; h) L. Ma, C.
Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248–1256; i) J. Lee,
O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T.
Hupp, Chem. Soc. Rev. 2009, 38, 1450–1459.
found C 55.92, H 3.80, N 7.20. IR: ν = 1654 (s), 1601 (s), 1538 (m),
˜
1498 (w), 1386 (s) cm–1. TG/DTA under atmospheric conditions: a
weight loss of 15.7% was observed below 200 °C; calcd. 12.0% for
2DMF and 10.5H2O.
[6]
a) R. Kitaura, G. Onoyama, H. Sakamoto, R. Matsuda, S.
Noro, S. Kitagawa, Angew. Chem. Int. Ed. 2004, 43, 2684–2687;
b) M. Oh, C. A. Mirkin, Angew. Chem. Int. Ed. 2006, 45, 5492–
5494; c) S.-H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp, T. E. Al-
brecht-Schmitt, Chem. Commun. 2006, 2563–2565; d) Y. M.
Jeon, J. Heo, C. A. Mirkin, J. Am. Chem. Soc. 2007, 129, 7480–
7481; e) S. Jung, M. Oh, Angew. Chem. Int. Ed. 2008, 47, 2049–
2051; f) B. Chen, X. Zhao, A. Putkham, K. Hong, E. B. Lob-
kovsky, E. J. Hurtado, A. J. Fletcher, K. M. Thomas, J. Am.
Chem. Soc. 2008, 130, 6411–6423; g) F. Song, C. Wang, J. M.
Falkowski, L. Ma, W. Lin, J. Am. Chem. Soc. 2010, 132, 15390–
15398.
a) L. Carlucci, G. Ciani, D. M. Proserpio, F. Porta, Angew.
Chem. Int. Ed. 2003, 42, 317–322; b) D. Hagrman, P. J. Hagr-
man, J. Zubieta, Angew. Chem. Int. Ed. 1999, 38, 3165–3168;
c) M. E. Kosal, J.-H. Chou, S. R. Wilson, K. S. Suslick, Nat.
Mater. 2002, 1, 118–121; d) D. W. Smithenry, S. R. Wilson,
K. S. Suslick, Inorg. Chem. 2003, 42, 7719–7721; e) L. Pan, X.
Huang, H.-L. N. Phan, T. J. Emge, J. Li, X. Wang, Inorg. Chem.
2004, 43, 6878–6880; f) T. Ohmura, A. Usuki, K. Fukumori,
T. Ohta, M. Ito, K. Tatsumi, Inorg. Chem. 2006, 45, 7988–7990;
g) A. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, J. Am.
Chem. Soc. 2009, 131, 4204–4205; h) E.-Y. Choi, C. A. Wray,
C. Hub, W. Choe, CrystEngComm 2009, 11, 553–555; i) R.
Makiura, S. Motoyama, Y. Umemura, H. Yamanaka, O. Sak-
ata, H. Kitagawa, Nat. Mater. 2010, 9, 565–571; j) K. S. Sus-
lick, P. Bhyrappa, J.-H. Chou, M. E. Kosal, S. Nakagaki, D. W.
Smithenry, S. R. Wilson, Acc. Chem. Res. 2005, 38, 283–291;
k) O. K. Farha, A. M. Shultz, A. A. Sarjeant, S. T. Nguyen,
J. T. Hupp, J. Am. Chem. Soc. 2011, 133, 5652–5655.
O. K. Farha, A. M. Spokoyny, K. L. Mulfort, M. F. Haw-
thorne, C. A. Mirkin, J. T. Hupp, J. Am. Chem. Soc. 2007, 129,
12680–12681; Y.-S. Bae, O. K. Farha, A. M. Spokoyny, C. A.
Mirkin, J. T. Hupp, R. Q. Snurr, Chem. Commun. 2008, 4135–
4137; A. M. Spokoyny, O. K. Farha, K. L. Mulfort, J. T. Hupp,
C. A. Mirkin, Inorg. Chim. Acta 2010, 364, 266–271.
J. W. Han, C. L. Hill, J. Am. Chem. Soc. 2007, 129, 15094–
15095.
K. M. Kadish, K. M. Smith, R. Guilard, The Porphyrin Hand-
book, Academic Press, San Diego, CA, 2000.
a) R. K. Kumar, S. Balasubramanian, I. Goldberg, Inorg.
Chem. 1998, 37, 541–552; b) R. K. Kumar, I. Goldberg, Angew.
Chem. Int. Ed. 1998, 37, 3027–3030; c) Y. Diskin-Posner, S.
Dahal, I. Goldberg, Chem. Commun. 2000, 585–586; d) Y. Dis-
kin-Posner, G. K. Patra, I. Goldberg, Eur. J. Inorg. Chem. 2001,
2515–2523; e) M. Shmilovits, Y. Diskin-Posner, M. Vinodu, I.
Goldberg, Cryst. Growth Des. 2003, 3, 855–863; f) M. Shmilov-
its, M. Vinodu, I. Goldberg, Cryst. Growth Des. 2004, 4, 633–
Supporting Information (see footnote on the first page of this arti-
cle): Selected bond lengths, TG/TDA plots, and powder XRD pat-
terns for Zn4·ZnTCPEP·DABCO.
[1] a) W. Mori, F. Inoue, K. Yoshida, H. Nakayama, S. Takamiz-
awa, M. Kishita, Chem. Lett. 1997, 26, 1219–1220; b) H. Li,
M. Eddaoudi, T. L. Groy, O. M. Yaghi, J. Am. Chem. Soc.
1998, 120, 8571–8572; c) K. Seki, S. Takamizawa, W. Mori,
Chem. Lett. 2001, 30, 122–123; d) M. Kondo, T. Yoshitomi, K.
Seki, H. Matsuzaka, S. Kitagawa, Angew. Chem. Int. Ed. Engl.
[7]
1997, 36, 1725–1727; e) L. J. Murray, M. Dinca, J. R. Long,
˘
Chem. Soc. Rev. 2009, 38, 1294–1314; f) J. L. C. Rowsell, O. M.
Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4670–4679; g) S. Kita-
gawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43,
2334; h) D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior,
M. J. Rosseinsky, Acc. Chem. Res. 2005, 38, 273–282.
[2] a) T. Sato, W. Mori, C. N. Kato, T. Ohmura, T. Sato, K. Yokoy-
ama, S. Takamizawa, S. Naito, Chem. Lett. 2003, 32, 854–855;
b) T. Sato, W. Mori, C. N. Kato, E. Yanaoka, T. Kuribayashi,
R. Ohtera, Y. Shiraishi, J. Catal. 2005, 232, 186–198; c) C. N.
Kato, M. Ono, T. Hino, T. Ohmura, W. Mori, Catal. Commun.
2006, 7, 673–677; d) ; W. Mori, T. Sato, T. Ohmura, C. N. Kato,
T. Takei, J. Solid State Chem. 2005, 178, 2555–2573; e) W.
Mori, T. Sato, C. N. Kato, T. Takei, T. Ohmura, Chem. Rec.
2005, 5, 336–351; f) W. Mori, S. Takamizawa, C. N. Kato, T.
Ohmura, T. Sato, Microporous Mesoporous Mater. 2004, 73,
31–46.
[3] a) D. Bradshaw, T. J. Prior, E. J. Cussen, J. B. Claridge, M. J.
Rosseinsky, J. Am. Chem. Soc. 2004, 126, 6106–6114; b) E.-Y.
Choi, K. Park, C.-M. Yang, H. Kim, J.-H. Son, S. W. Lee, Y. H.
Lee, D. Min, Y.-U. Kwon, Chem. Eur. J. 2004, 10, 5535–5540;
c) E. Y. Lee, S. Y. Jang, M. P. Suh, J. Am. Chem. Soc. 2005,
[8]
127, 6374–6381; d) M. Dinca, J. R. Long, J. Am. Chem. Soc.
˘
2005, 127, 9376–9377; e) L. Pan, D. H. Olson, L. R. Ciemno-
lonski, R. Heddy, J. Li, Angew. Chem. Int. Ed. 2006, 45, 616–
619; f) B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L.
Clancy, E. B. Lobkovsky, O. M. Yaghi, S. Dai, Angew. Chem.
Int. Ed. 2006, 45, 1390–1393; g) P. S. Bárcia, F. Zapata, J. A. C.
Silva, A. E. Rodrigues, B. Chen, J. Phys. Chem. B 2007, 111,
6101–6103; h) S. Ma, D. Sun, X.-S. Wang, H.-C. Zhou, Angew.
Chem. Int. Ed. 2007, 46, 2458–2462; i) Y.-S. Bae, K. L. Mulfort,
H. Frost, P. Ryan, S. Punnathanam, L. J. Broadbelt, J. T. Hupp,
R. Q. Snurr, Langmuir 2008, 24, 8592–8598; j) L. Bastin, P. S.
Barcia, E. J. Hurtado, J. A. M. Silva, A. E. Rodrigues, B. Chen,
J. Phys. Chem. C 2008, 112, 1575–1581; k) J.-R. Li, R. J.
Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504.
[9]
[10]
[11]
4556
www.eurjic.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2011, 4550–4557