Journal of the American Chemical Society
COMMUNICATION
’ AUTHOR INFORMATION
Corresponding Author
dhryu@skku.edu; gshwang@kbsi.re.kr
’ ACKNOWLEDGMENT
This work was supported by grants NRF-20110031392
(Priority Research Centers Program), NRF-20110002654
(Basic Science Research Program), NRF-20110029186 (Mid-
career Researcher Program) and the Korea Basic Science Insti-
tute(T31409).
Figure 2. Transition state model for the asymmetric cyclopropanation
reaction between tert-butyl phenyldiazoacetate and α,β-disubstituted
acroleins.
Encouraged by the good results demonstrated in Table 2, we
applied this catalytic methodology to the cyclopropanation of
α-substituted acroleins using a range of diazoacetates. As summar-
ized in Table 3, although the electronic properties of the aryl-
diazoacetates15 varied vastly, the reactions produced the corre-
sponding cyclopropanes in high yields and diastereoselectivities
with excellent enantioselectivities (entries 1À9 and 11). It is notable
that the substituents at the α-position of the acrolein were also
electronically different (entries 1À6). The use of 4-methoxyphe-
nyldiazoacetate dramatically diminished the trans:cis ratio to
55:45,7c but high enantiocontrol was still achieved for each isomer
(95% ee for trans, 94% ee for cis; entry 10). Although the reaction
between tert-butyl diazoacetate and methacrolein afforded optically
active 2-pyrazoline10d in the presence of oxazaborolidinium catalyst
1a, the reactions of α-haloacroleins provided the corresponding
cyclopropanes 2w and 2x in high yields with excellent enantioselec-
tivities (entries 12 and 13).
The observed stereochemistry of the asymmetric cyclopropa-
nation using oxazaborolidinium ion catalyst 1b can be explained
by the transition state model shown in Figure 2. The mode of
coordination of the α,β-unsaturated aldehyde to 1b is the same as
that previously shown for enantioselective DielsÀAlder,10a
cyanosilylation,10b and 1,3-dipolar cycloaddition10d reactions.
In the pre-transition-state assembly (4 in Figure 2), the double
bond of the acrolein is situated above the 3,5-dimethylphenyl
group. This effectively shields the re face (back) of the acrolein
from attack by the diazoacetate. Because of the dipoleÀdipole
interaction between the two carbonyl groups, when the diazo-
acetate approaches the β-carbon of acrolein for the 1,4-addition,
the tert-butyl ester group is situated away from the aldehyde
group. Thus, the 1,4-addition of the diazoacetate from the si face
(front) of the acrolein is facilitated, leading to intermediate 5,
which can then cyclize with the loss of nitrogen to form
trans-(1R,2S,3S)-cyclopropane as the major enantiomer for 2i
and trans-(1S,2R)-cyclopropane for 2g.
’ REFERENCES
(1) (a) Donaldson, W. A. Tetrahedron 2001, 57, 8589. (b) Wessjohann,
L. A.; Brandt, W.; Thiemann, T. Chem. Rev. 2003, 103, 1625.
(2) (a) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151. (b)
Reichelt, A.; Martin, S. F. Acc. Chem. Res. 2006, 39, 433.
(3) (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem.
Rev. 2003, 103, 977. (b) Pellissier, H. Tetrahedron 2008, 64, 7041.
(4) (a) Caballero, A.; Prieto, A.; Díaz-Requejo, M. M.; Pꢀerez, P. J.
Eur. J. Inorg. Chem. 2009, 1137. (b) Goudreau, S. R.; Charette, A. B.
Angew. Chem., Int. Ed. 2010, 49, 486.
(5) For recent selected examples, see: (a) Zhu, S.; Xu, X.; Perman,
J. A.; Zhang, X. P. J. Am. Chem. Soc. 2010, 132, 12796. (b) Ito, J.-i.; Ujiie,
S.; Nishiyama, H. Chem.—Eur. J. 2010, 16, 4986. (c) Marcoux, D.;
Charette, A. B. Angew. Chem., Int. Ed. 2008, 47, 10155. (d) Zhu, S.;
Perman, J. A.; Zhang, X. P. Angew. Chem., Int. Ed. 2008, 47, 8460. (e)
Suematsu, H.; Kanchiku, S.; Uchida, T.; Katsuki, T. J. Am. Chem. Soc.
2008, 130, 10327. (f) Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher,
L.; Fokin, V. V. J. Am. Chem. Soc. 2009, 131, 18034. (g) Marcoux, D.;
Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 6970. (h) Ichinose,
M.; Suematsu, H.; Katsuki, T. Angew. Chem., Int. Ed. 2009, 48, 3121.
(i) Davies, H. M. L.; Antoulinakis, E. G. Org. React. 2001, 57, 1.
(6) For recent selected examples involved ylides, see: (a) Riches,
S. L.; Saha, C.; Filgueira, N. F.; Grange, E.; McGarrigle, E. M.; Aggarwal,
V. K. J. Am. Chem. Soc. 2010, 132, 7626. (b) Zhu, B.-H.; Zhou, R.; Zheng,
J.-C.; Deng, X.-M.; Sun, X.-L.; Shen, Q.; Tang, Y. J. Org. Chem. 2010,
75, 3454. (c) Appel, R.; Hartmann, N.; Mayr, H. J. Am. Chem. Soc. 2010,
132, 17894. (d) Ochiai, M.; Tada, N.; Okada, T.; Sota, A.; Miyamoto, K.
J. Am. Chem. Soc. 2008, 130, 2118. (e) Sun, X.-L.; Tang, Y. Acc. Chem.
Res. 2008, 41, 937. (f) Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrara, M.;
Hynd, G.; Porcelloni, M. Angew. Chem., Int. Ed. 2001, 40, 1433. For
recent selected examples involving an organocatalyst, see:(g) Russo, A.;
Meninno, S.; Tedesco, C.; Lattanzi, A. Eur. J. Org. Chem. 2011, 5096. (h)
Pesciaioli, F.; Righi, P.; Mazzanti, A.; Bartoli, G.; Bencivenni, G. Chem.—
Eur. J. 2011, 17, 2842. (i) Li, W.; Li, X.; Ye, T.; Wu, W.; Liang, X.; Ye, J.
Tetrahedron Lett. 2011, 52, 2715. (j) Kunz, R. K.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2005, 127, 3240. (k) In Asymmetric Organocatalysis;
List, B., Ed.; Springer: Berlin, 2010. (l) Papageorgiou, C. D.; Cubillo de
Dios, M. A.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2004,
43, 4641. For related research on Lewis acid catalysts, see:(m) Kakei, H.;
Sone, T.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc.
2007, 129, 13410.
In summary, the first case of highly enantiocontrolled catalytic
cyclopropanation using diazoacetate as an ylide has been developed.
This method gives highly functionalized tetrasubstituted cyclopro-
panes in high yields with excellent enantioselectivities. The absolute
configuration of the product is that predicted by the transition state
model in Figure 2. We believe that the resulting optically active
electrophilic cyclopropane derivatives with densely functionalized
groups could be highly valuable for further transformations.
(7) (a) Doyle, M. P.; Buhro, W. E.; Dellaria, J. F., Jr. Tetrahedron Lett.
1979, 20, 4429. (b) Branstetter, B.; Hossain, M. M. Tetrahedron Lett.
2006, 47, 221. (c) Hashimoto, T.; Naganawa, Y.; Kano, T.; Maruoka, K.
Chem. Commun. 2007, 5143.
(8) (a) Gnad, F.; Reiser, O. Chem. Rev. 2003, 103, 1603. (b)
Cativiela, C.; Díaz-de-Villegas, M. D. Tetrahedron: Asymmetry 2000,
11, 645. (c) Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko,
J.; Hudlicky, T. Chem. Rev. 1989, 89, 165.
’ ASSOCIATED CONTENT
(9) (a) In Quaternary Stereocenters: Challenges and Solutions in
Organic Synthesis; Christoffers, J., Baro, A., Eds.; Wiley-VCH, Weinheim,
Germany, 2006. (b) Christoffers, J.; Baro, A. Adv. Synth. Catal. 2005,
347, 1473. (c) Trost, B. M.; Jiang, C. Synthesis 2006, 369. (d) Cozzi,
S
Supporting Information. Experimental procedures, ana-
b
lytical data, and crystallographic data (CIF). This material is
20710
dx.doi.org/10.1021/ja209270e |J. Am. Chem. Soc. 2011, 133, 20708–20711