S. Drouet et al. / Tetrahedron 68 (2012) 98e105
105
Table 2
the solution. Fluorescence measurements on dilute solutions
(10ꢂ6 M, optical density <0.1) were performed using a right-angle
detection setup in standard 10-mm quartz cuvettes on an Edin-
burgh Instruments (FLS920) spectrometer equipped with a 450 W
Xenon lamp and a Peltier-cooled Hamamatsu R928P photo-
Photophysical properties of the zinc fluorenyl porphyrins 3 and 4, and of the su-
pramolecular systems 5 and 6 at 1.5ꢁ10ꢂ3 M in CH2Cl2 solution at 298 K
abs
a
em a
Compound
l
[nm]
l
[nm]
max
max
ZnTFP (3)
(ZnTFP)3-tripod (5)
ZnOOFP (4)
556, 598
562, 605
553, 594
558, 599
621, 660
620, 664
604, 654
609, 659
multiplier tube in photon-counting mode. Fully corrected emission
abs
spectra were obtained, for each compound, at lex
¼
l
with an
max
(ZnOOFP)3-tripod (6)
optical density at lexꢃ0.1 to minimize internal absorption. Fluo-
rescence quantum yields were measured according to literature
procedures.24,26 Fluorescence measurements at higher concentra-
tions (10ꢂ3 M) were performed using a front-face detection setup in
1-mm path length quartz cells on a Horiba Jobin-Yvon Fluorolog-3
spectrometer equipped with 450 W Xenon lamp an a Hamamatsu
R928P photomultiplier tube.
a
Experimental absorption and emission maxima.
1717 (vs, C]O). HRMSeESI: calcd for C42H25N6O3 661.1988
[MþH]þ. Found 661.1981.
4.5. Synthesis of supramolecular assembly 5
Acknowledgements
To a solution of zinc complex ZnTFP (3) (50 mg, 49
mmol) in
ꢀ
Funding for the project was obtained from the ‘Universite
CH2Cl2 (15 mL) was added the ligand 7 (10 mg, 15 mol). The re-
m
ꢀ
Europeenne de Bretagne’ (UEB) and from FEDER by an EPT grant in
the ‘MITTSI’ program from RTR BRESMAT. This research was sup-
ported by grants from the ‘Region Bretagne’ (AREDdA.M.) and from
the ‘Ministere National de la Recherche et de la Technologie’
action mixture was stirred at room temperature under argon. After
1 h (TLC checking), the reaction mixture was concentrated and
precipitated with pentane to afford 51 mg (91%) of the desired
supramolecular assembly 5 as a purple solid. 1H NMR (500 MHz,
0
d in ppm): 8.98 (s, 24H, Hb-pyrrolic), 8.40 (large s, 12H, H1 ),
ꢀ
ꢁ
(MNERTdS.D.). The authors are grateful to S. Sinbandhit (CRMPO)
CDCl3,
3
3
for technical assistance and helpful discussions.
0
0
8.26 (large d, JH,H¼7 Hz, 12H, H3 ), 8.13 (d, JH,H¼7 Hz, 12H, H4 ),
3
3
0
0
8.05 (d, JH,H¼8 Hz, 12H, H5 ), 7.68 (d, JHH¼7 Hz, 12H, H8 ), 7.52 (t,
3
3
Supplementary data
0
0
JHH¼6 Hz, 12H, H6 ), 7.42 (t, JHH¼6 Hz, 12H, H7 ), 7.34 (d,
3JHH¼8 Hz, 6H, Hphenyl), 7.21 (d, 3JHH¼8 Hz, 6H, Hphenyl), 6.55 (large
3
Supplementary data associated with this article can be found, in
0
d, JHH¼5 Hz, 6H, HB), 5.71 (v large d, 6H, HA), 4.20 (s, 24H, H9 ,
CH2fluorene). UVevis (l max, CH2Cl2, nm): 263 (fluorene), 303 (li-
gand 7), 428 (Soret band), 554 (Q band), 596 (Q band). FT-IR (KBr,
cmꢂ1): 2221 (m,
n
C^C), 1740 (s, C]O). Anal. Calcd (%) for
n
References and notes
C258H156N18O3Zn3$3CH2Cl2: C, 78.23; H, 4.07; N, 6.29. Found: C,
78.97; H, 4.38; N, 6.23.
1. Wasielewski, M. R. J. Org. Chem. 2006, 71, 5051.
2. McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaitelawless, A. M.;
Papiz, M. Z.; Cogdell, R. J.; Isaacs, N. W. Nature 1995, 374, 517.
3. Paul-Roth, C.; Williams, G.; Letessier, J.; Simonneaux, G. Tetrahedron Lett. 2007,
48, 4317.
4.6. Synthesis of supramolecular assembly 6
4. Paul-Roth, C. O.; Simonneaux, G. Tetrahedron Lett. 2006, 47, 3275.
5. Paul-Roth, C. O.; Simonneaux, G. C.R. Chimie. 2006, 9, 1277.
6. Drouet, S.; Paul-Roth, C. O.; Fattori, V.; Cocchi, M.; Williams, J. A. G. New J. Chem.
2011, 35, 438.
7. Yamazaki, I.; Akimoto, S.; Yamazaki, T.; Osuka, A. Acta Phys. Pol., A 1999, 95, 105.
8. Mongin, O.; Papamicael, C.; Hoyler, N.; Gossauer, A. J. Org. Chem. 1998, 63, 5568.
9. Brodard, P.; Matzinger, S.; Vauthey, E.; Mongin, O.; Papamicael, C.; Gossauer, A.
J. Phys. Chem. A 1999, 103, 5858.
10. Prathapan, S.; Johnson, T. E.; Lindsey, J. S. J. J. Am. Chem. Soc. 1993, 115, 7519.
11. Tong, L. H.; Pascu, S. I.; Jarrosson, T.; Sanders, J. K. M. Chem. Commun. 2006,
1085.
12. Sabbatini, N.; Guardigli, M.; Lehn, J.-M. Coord. Chem. Rev. 1993, 123, 201.
13. Beletskaya, I.; Tyurin, V. S.; Tsivadze, A. Y.; Guilard, R.; Stern, C. Chem. Rev. 2009,
109, 1659.
14. Drain, C. M.; Varotto, A.; Radivojevic, I. Chem. Rev. 2009, 109, 1630.
15. Argouarch, G.; Veillard, R.; Roisnel, T.; Amar, A.; Boucekkine, A.; Singh, A.; Le-
doux, I.; Paul, F. New J. Chem. 2011, 35, 2409.
16. Paul-Roth, C.; Rault-Berthelot, J.; Simonneaux, G. Tetrahedron 2004, 60, 12169.
17. Drouet, S.; Paul-Roth, C.; Simonneaux, G. Tetrahedron 2009, 65, 2975.
18. Bonnet, J. J.; Eaton, S. S.; Eaton, G. R.; Holm, R. H.; Ibers, J. A. J. Am. Chem. Soc.
1973, 95, 2141.
To a solution of zinc complex ZnOOFP (4) (50 mg, 22
mmol) in
CH2Cl2 (15 mL) was added ligand tripod 7 (5 mg, 7 mol). The re-
m
action mixture was stirred at room temperature under argon. After
1 h (TLC checking), the reaction mixture was concentrated and
precipitated with pentane to afford 48 mg (96%) of desired supra-
molecular assembly 6, as a purple solid. 1H NMR (500 MHz, CDCl3,
3
0
d
in ppm): 8.94 (s, 24H, Hb-pyrrolic), 7.76 (d, JH,H¼8 Hz, 24H, H4 ),
3
0
0
7.75 (d, JH,H¼8 Hz, 24H, H5 ), 7.66 (s, 24H, H1 ), 7.54 (s, 24H, HB),
7.51 (d, 3JH,H¼7 Hz, 24H, H8 ), 7.47 (d, JH,H¼7 Hz, 24H, H3 ), 7.34 (t,
3
0
0
3
3
0
0
JH,H¼7 Hz, 24H, H6 ), 7.27 (t, JH,H¼7 Hz, 24H, H7 ), 7.16 (d,
3JH,H¼8 Hz, 6H, Hphenyl), 7.12 (s, 12H, HE), 7.01 (d, JH,H¼8 Hz, 6H,
3
Hphenyl), 5.90 (large s, 6H, Hpyridine), 5.26 (s, 48H, OCH2), 3.86 (s,
0
00
48H, H9 and H9 ). UVevis (
(ligand 7), 425 (Soret band), 551 (Q band), 591 (Q band). FT-IR (KBr,
cmꢂ1): 2223 (m,
C^C), 1740 (s, C]O). Anal. Calcd (%) for
l max, CH2Cl2, nm): 270 (fluorene), 304
n
n
C510H348N18O27Zn3$3CHCl3: C, 79.87; H, 4.59; N, 3.27. Found: C,
78.82; H, 5.36; N, 3.09.
19. Prodi, A.; Chiorboli, C.; Scandola, F.; Lengo, E.; Alessio, E.; Dobrava, R.; Wurth-
ner, F. J. Am. Chem. Soc. 2005, 127, 1454.
20. Alessio, E.; Geremia, S.; Mestroni, S.; Srnova, I.; Slouf, M.; Gianferrara, T.; Prodi,
A. Inorg. Chem. 1999, 38, 2527.
21. Gouterman, M. The Porphyrins; Academic: New York, NY, 1978; Vol. 3, 24.
22. Gouterman, M. J. Mol. Spectrosc. 1961, 6, 138.
4.7. Photophysical methods
23. Austin, E.; Gouterman, M. Bioinorg. Chem. 1978, 9, 281.
24. Eaton, G. R. Pure Appl. Chem. 1988, 60, 1107.
25. Owens, J. W.; Smith, R.; Robinson, R.; Robins, M. Inorg. Chim. Acta 1998, 279,
226.
26. Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 75, 991.
All photophysical properties measurements have been per-
formed at room temperature (298 K). UVevis absorption spectra
were recorded on a Jasco V-570 spectrophotometer, using 10-mm or
1-mm path length quartz cells, depending on the concentration of