M. J. Ahsan et al. / Bioorg. Med. Chem. Lett. 21 (2011) 7246–7250
7249
Table 3
Antimicrobial and antitubercular screening of the title compounds (4a–n)
Compound
Minimum inhibitory concentration (
Antibacterial
B. subtilis E. coli
l
g/mL)
MIC (
Antitubercular
MTBa MTBb
lM)
Antifugal
C. albicans
S. aureus
P. aeruginosa
A. niger
4a
4b
4c
4d
4e
4f
4g
4h
4i
4j
4k
4l
4
8
16
16
4
8
32
16
4
4
8
8
64
32
256
256
128
256
8
512
512
16
8
128
4
512
>512
128
—
256
128
128
256
16
512
512
32
16
256
4
512
512
256
—
1.97
3.94
4.15
0.78
>13.25
>12.78
10
>12.78
>13.31
>13.31
10
12.65
12.65
8.29
1.52
NT
NT
13.8
NT
16
16
128
256
512
256
256
512
256
256
64
8
128
512
512
>512
256
>512
512
256
128
8
64
128
512
512
>512
512
>512
512
256
128
8
256
512
>512
256
>512
512
256
128
16
NT
NT
13.31
>13.31
12.78
13.62
—
10
4m
4n
Ciprofloxacin
Fluconazole
Isoniazid
12.78
6.81
—
—
0.78
4
—
—
4
—
—
4
—
—
4
—
—
2
—
1
—
—
11.58
NT = not tested.
a
Mycobacterium tuberculosis H37Rv.
INHR-TB.
b
low to high antibacterial activity. The compound 4a showed good
antibacterial activity while compounds 4c, 4d and 4n showed
facilities. The authors are also thankful to Dr. K. P. Singh and Dr.
(Mrs.) Shobha Tomar, National Institute of Medical Sciences Uni-
versity, Jaipur, Rajasthan, India for their guidance.
moderate activity with MICs 8–64
strains. The activity of compound, 4a (MIC 4
eus, B. subtiltis and E. coli and the activity of compound, 4b (MIC
g/mL) against E. coli was found to be comparable with that of
lg/mL against various bacterial
lg/mL) against S. aur-
Supplementary data
4
l
the standard drug ciprofloxacin. The N-aryl with electronegative
group substitution such as 2-chlorophenyl, 4-chlorophenyl and
2-thiophenyl group showed maximum antibacterial activity. The
antifungal activity of the title compound was found to be low to
moderate. The compounds, 4e, 4i and 4k showed moderate anti-
Supplementary data associated with this article can be found, in
References and notes
fungal activity with MICs, 4–16 lg/mL. The compound, 4k showed
maximum antifungal activity, albeit less active than the standard
drug fluconazole. The N-aryl with 2-hydroxyphenyl, 4-methyl-
phenyl and 2-methylphenyl group substitution showed maximum
antifungal activity than electronegative group substitution. When
the biological activities were related with computational calcu-
lated drug-likeness score model it was found out that the com-
pound, 4a with maximum drug-likeness score model (0.95)
showed maximum antibacterial activity. The compounds, 4i and
4k showed maximum antifungal activity have drug-likeness score
model of 0.93 and 0.69, respectively. The compound 4a, 4b, 4c and
4d showed maximum antimycobacterial inhibition had drug-like-
ness score model 0.95, 0.79, 0.61 and 0.60, respectively.
2. WHO report 2010, Global Tuberculosis Control Surveillance, Financing and
Planning.
3. Mohamed, A. M.; Magdy, M. G.; Magda, N. N.; Waleed, A. H. B. Arch. Pharm.
Pharm. Med. Chem. 2004, 337, 427.
4. Spratt, B. G. Science. 1994, 264, 388.
5. Joshi, S. D.; Vagdevi, H. M.; Vaidya, V. P.; Gadaginamath, G. S. Eur. J. Med. Chem.
2008, 43, 1989.
6. Mullican, M. D.; Wilson, M. W.; Connor, D. T.; Kostlan, C. R.; Schrier, D. J.; Dyer,
R. D. J. Med. Chem. 1993, 361, 1090.
7. Boschelli, D. H.; Connor, D. T.; Bornemeier, D. A.; Dyer, R. D.; Kennedy, J. A.;
Kuipers, P. J.; Okonkwo, G. C.; Schrier, D. J.; Wright, C. D. J. Med. Chem. 1993, 36,
1802.
8. Raman, K.; Singh, K. H.; Salzman, S. K.; Parmar, S. S. J. Pharm. Sci. 1993, 821, 167.
9. Sahin, G.; Palaska, E.; Kelicen, P.; Demirdamar, R.; Altinok, G.; Arzneim, F. Drug
Res. 2001, 51, 478.
10. Gaonkar, S. L.; Rai, K. M. L.; Prabhuswamy, B. Eur. J. Med. Chem. 2006, 41, 841.
11. El-Emam, A. A.; Al-Deeb, O. A.; Al-Omar, M.; Lehmann, J. Bioorg. Med. Chem.
2004, 12, 5107.
All the active compounds were tested for cytotoxicity (IC50) in
VERO cells at concentrations of 62.5 lg/mL or 10 times the MIC.
After 72 h exposure, viability was assessed on the basis of cellular
conversion of MTT into a formazan product using the Promega Cell
Titer 96 Non-radioactive Cell proliferation method. Most of the ac-
12. Bakht, M. A.; Yar, M. S.; Abdel-Hamid, S. G.; Al-Qasoumi, S. I.; Samad, A. Eur. J.
Med. Chem. 2010, 45, 5862.
13. Shi, W.; Qian, X.; Zhang, R.; Song, G. J. Agric. Food Chem. 2001, 49,
124.
14. Andreani, A.; Granaiola, M.; Leoni, A.; Morigi, R.; Ramballdi, M. Eur. J. Med.
Chem. 2001, 36, 743.
15. Kini, S. G.; Bhat, A. R.; Bryant, B.; Williamson, J. S.; Dayan, F. E. Eur. J. Med. Chem.
2009, 44, 492.
16. Ali, M. A.; Samy, G. J.; Manogaran, E.; Sellappan, V.; Hassan, M. Z.; Ahsan, M. J.;
Pandian, S.; ShaharYar, M. Bioorg. Med. Chem. Lett. 2009, 19, 7000.
17. Ahsan, M. J.; Samy, G. J.; Dutt, K. R.; Agrawal, U. K.; Shankar, B.; Vyas, S.; Kaur,
R.; Yadav, G. Bioorg. Med. Chem. Lett. 2011, 21, 4451.
18. Zhao, Y.; Abraham, M. H.; Lee, J.; Hersey, A.; Luscombe, N. C.; Beck, G.;
Sherborne, B.; Cooper, I. Pharm. Res. 2002, 19, 1446.
19. Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kapple, K. D.
J. Med. Chem. 2002, 45, 2615.
tive compounds were found to be non-toxic up to 62.5 l
g/mL.28
The molecular docking simulation for possible action on InhA are
currently under investigation. Also studies to acquire more infor-
mation about quantitative structure–activity relationships (QSAR)
and MDR are in progress in our laboratory. The oxadiazole deriva-
tives discovered in this study may provide valuable therapeutic
intervention for the treatment of tubercular disease.
Acknowledgments
20. Refsgaard, H. H. F.; Jensen, B. F.; Brockhoff, P. B.; Padkjaer, S. B.; Guldbrandt, M.;
Christensen, M. S. J. Med. Chem. 2005, 48, 805.
21. Ertl, A.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714.
Authors are thankful to the management people of Alwar
Pharmacy College, Alwar, Rajasthan, India for providing research