to the four N–H bonds. This provides scope for hydrogen
bonding similar to that reported previously by Ahn et al. in
the context of an alaninol-derived tripodal oxazoline,13 and
hence for aggregation. If aza-BODIPY complexes are aligned
face-to-face in an opposite direction as is required to avoid steric
2 H. Lu, S. Shimizu, J. Mack, Z. Shen and N. Kobayashi, Chem.–
Asian J., 2011, 6, 1026.
3 (a) B. Turfan and E. U. Akkaya, Org. Lett., 2002, 4, 2857;
(b) G. Ulrich and R. Ziessel, J. Org. Chem., 2004, 69, 2070;
(c) K. Rurack, M. Kollmannsberger, U. Resch-Genger and
J. Daub, J. Am. Chem. Soc., 2000, 122, 968.
+
4 F. Bergstrom, I. Mikhalyo and P. Hagglof, J. Am. Chem. Soc.,
2002, 124, 196.
crowding due to the phenyl rings and BF2, an NH4 ion can
potentially interact with the four nitrogen atoms of two pyrazine
rings in a tetrahedral geometry (Fig. S4, ESIw). There is also
scope for hydrogen bonding with the central meso- and pyrrole
nitrogens. H-aggregation is not observed with 4, since hydrogen
bonding is not possible with the peripheral fused benzene rings.
A blue-shifted absorption band is typically observed for
H-aggregates, since only the transition to a higher energy
exciton state is optically allowed (Fig. S4, ESIw) when the
electric dipole transition moments are aligned parallel to the
axis of stacking.12 H-aggregate spectra usually do not contain
the unusually narrow and intense bands that are observed in
the spectra of J-aggregates, but tend instead to contain bands
of comparable width to the monomer with associated vibrational
bands.14 The intensity mechanism for the blue-shifted
H-aggregate band is currently less well understood and more
difficult to predict than that of the red-shifted bands of
J-aggregates.14 Calculations on a model trimer structure
predict that even with a relatively limited degree of aggregation
the lowest energy state is greatly stabilized (Fig. S5, ESIw).
H-aggregates are usually weakly or non-fluorescent, since
either non-radiative decay is the dominant pathway back to
the ground state for this reason or there is an enhancement of
intersystem crossing to the triplet manifold.12
5 (a) Z. Shen, H. Rohr, K. Rurack, H. Uno, M. Spieles, B. Schulz,
G. Reck and N. Ono, Chem.–Eur. J., 2004, 10, 4853;
(b) K. Rurack, M. Kollmannsberger and J. Daub, Angew. Chem.,
Int. Ed., 2001, 40, 385; (c) A. Coskun, E. Deniz and E. U. Akkaya,
Org. Lett., 2005, 7, 5187.
6 (a) R. Guliyev, A. Coskun and E. U. Akkaya, J. Am. Chem. Soc.,
2009, 131, 9007; (b) Y. H. Yu, A. B. Descalzo, Z. Shen, Q. Liu,
Y. W. Wang, M. Spieles, Y. Z. Li, K. Rurack and X. Z. You,
Chem.–Asian J., 2006, 1, 176; (c) D. Kumaresan, R. P. Thummel,
T. Bura, G. Ulrich and R. Ziessel, Chem.–Eur. J., 2009, 15, 6335;
(d) K. Rurack, M. Kollmannsberger and J. Daub, New J. Chem.,
2001, 25, 289; (e) Q. Zheng, G. Xu and P. N. Prasad, Chem.–Eur.
J., 2008, 14, 5812; (f) O. Buyukcakir, O. A. Bozdemir, S. Kolemen,
S. Erbas and E. U. Akkaya, Org. Lett., 2009, 11, 4644;
(g) O. A. Bozdemir, O. Buyukcakir and E. U. Akkaya, Chem.–Eur.
J., 2009, 15, 3830; (h) T. Rousseau, A. Cravino, T. Bura, G. Ulrich,
R. Ziessel and J. Roncali, Chem. Commun., 2009, 1673;
(i) T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel and
J. Roncali, J. Mater. Chem., 2009, 19, 2298; (j) J. Y. Liu,
E. A. Ermilov and B. Roder, Chem. Commun., 2009, 1517;
(k) S. Diring, F. Puntoriero, F. Nastasi, S. Campagna and
R. Ziessel, J. Am. Chem. Soc., 2009, 131, 6108.
7 (a) A. B. Descalzo, H. J. Xu, Z. L. Xue, K. Hoffmann, Z. Shen,
M. G. Weller, X. Z. You and K. Rurack, Org. Lett., 2008,
10, 1581; (b) K. Umezawa, Y. Nakamura, H. Makino,
D. Citterio and K. Suzuki, J. Am. Chem. Soc., 2008, 130, 1550;
(c) Z. Shen, H. Rohr, K. Rurack, H. Uno, M. Spieles, B. Schulz,
¨
G. Reck and N. Ono, Chem.–Eur. J., 2004, 10, 4853; (d) S. Atilgan,
Z. Ekmekci, A. L. Dogan, D. Guc and E. U. Akkaya, Chem.
Commun., 2006, 4398.
In conclusion, the rational design of an aza-BODIPY dye
with fused pyrazine rings provides the first example of the use
of a fused-ring-expanded aza-BODIPY complex as a chemo-
sensor. Highly selective colorimetric and fluorometric detection
8 (a) J. Killoran, L. Allen, J. Gallagher, W. Gallagher and
D. F. O’Shea, Chem. Commun., 2002, 1862; (b) A. Coskun,
M. D. Yilmaz and E. U. Akkaya, Org. Lett., 2007, 9, 607;
(c) W. Zhao and E. M. Carreira, Chem.–Eur. J., 2006, 12, 7254;
(d) A. Loudet, R. Bandichhor, K. Burgess, A. Palma,
S. O. McDonnell, M. J. Hall and D. F. O’Shea, Org. Lett., 2008,
10, 4771; (e) Y. H. Yu, Z. Shen, H. Y. Xu, Y. W. Wang,
T. Okujima, N. Ono, Y. Z. Li and X. Z. You, J. Mol. Struct.,
2007, 827, 130; (f) H. Lu, L. Q. Xiong, H. Z. Liu, M. X. Yu,
Z. Shen, F. Y. Li and X. Z. You, Org. Biomol. Chem., 2009,
7, 2554.
9 (a) H. C. Kang and R. P. Haugland, U.S. Patent 5433896, July 18,
1955; (b) V. F. Donyagina, S. Shimizu, N. Kobayashi and
E. A. Lukyanets, Tetrahedron Lett., 2008, 49, 6152.
10 (a) N. Kobayashi, M. Fujihira, T. Osa and T. Kuwana, Bull. Chem.
Soc. Jpn., 1980, 53, 2195; (b) N. Kobayashi and A. B. P. Lever,
J. Am. Chem. Soc., 1980, 109, 7433.
+
of the NH4 ion is observed and the pronounced spectral
changes enable naked-eye detection. The successful rational
design and synthesis of this dye and its apparent H-aggregation
further demonstrate how the flexibility which is introduced by
the use of phthalonitriles as precursors2 can provide scope for
the development of efficient aza-BODIPY chemosensors suitable
for use in the NIR region, despite the absence of the meso-
carbon typically used to incorporate recognition units in the
context of BODIPYs.
Financial support was provided by the National Natural
Science Foundation of China (nos. 20971066 and 21021062),
the Chinese Ministry of Education’s Program for New Century
Excellent Talents in Universities (no. NCET-08-0272), the
Major State Basic Research Development Program of China
(grant nos. 2011CB808704 and 2007CB925103), and a Grant-
in-Aid for Scientific Research on Innovative Areas (no.
20108007, ‘‘pi-Space’’) from the Ministry of Education,
Culture, Sports, Science, and Technology (MEXT), Japan.
11 (a) V. Novakova, P. Zimcik, M. Miletin, L. Vachova, K. Kopecky,
K. Lang, P. Chabera and T. Polıvka, Phys. Chem. Chem. Phys.,
´ ´
2010, 12, 2555; (b) S. Kim, T. K. An, J. Chen, L. Kang, S. H. Kang,
D. S. Chung, C. E. Park, Y. H. Kim and S. K. Kwon, Adv. Funct.
Mater., 2011, 21, 1616; (c) Y. Tokoro, A. Nagai and Y. Chujo,
Tetrahedron Lett., 2010, 51, 3451; (d) S. Gadde, E. K. Betchelor,
J. P. Weiss, Y. H. Ling and A. E. Kaifer, J. Am. Chem. Soc., 2008,
130, 17119; (e) A. Chowdhury, S. Wachsmannhogiu, P. R. Bangal,
I. Raheem and L. A. Peteanu, J. Phys. Chem. B, 2001, 105, 12196;
(f) Y. H. Zhang and Y. Wu, Chin. Chem. Lett., 2005, 16, 279;
(g) J. Kang, O. Kaczmarek, J. Liebscher and L. Dahne, Int. J.
Polym. Sci., 2010, 264781.
12 (a) M. Kasha, H. R. Rawis and M. A. El-Bayoumi, Pure Appl.
Chem., 1965, 11, 371; (b) T. Katoh, Y. Inagaki and R. Okazaki,
Bull. Chem. Soc. Jpn., 1997, 70, 2279.
13 K. H. Ahn, H.-Y. Ku, Y. Kim, S.-G. Kim, Y. K. Kim, H. S. Son
and J. K. Ku, Org. Lett., 2003, 5, 1419.
14 A. Eisfeld and J. S. Briggs, Chem. Phys., 2006, 324, 376.
¨
Notes and references
1 (a) R. Gresser, M. Hummert, H. Hartmann, K. Leo and M. Riede,
Chem.–Eur. J., 2011, 17, 2939; (b) Z. Dost, S. Atilgan and
E. U. Akkaya, Tetrahedron, 2006, 62, 8484; (c) R. P. Haugland,
Handbook of Fluorescent Probes and Research Products, 9th edn,
2002, 830–932.
c
12094 Chem. Commun., 2011, 47, 12092–12094
This journal is The Royal Society of Chemistry 2011