the plane of the DTT unit with smaller dihedral angles of 2.9ꢁ and
4.3ꢁ. As a consequence, the DEP-DTT molecule presents a bowed
shape, as shown in Fig. 3(d). Furthermore, it is unexpected that the
S–S intermolecular interaction disappears with the emergence of
multiple S–C intermolecular interactions in DEP-DTT, as shown in
Fig. 3(e). The distances between C atoms and the middle S atom of
no field-effect characteristics. The introduction of a C]C
double bond causes the formation of S–p intermolecular inter-
action in DEP-DTT, which plays an important role in the
molecular arrangement in single crystal and film structures, and
has a significant contribution to charge transport in OFETs. It
will help us to design and synthesize new organic semicon-
ductors with high field-effect mobility by utilizing the various inter-
molecular interactions.
ꢀ
the neighboring DTT unit are 3.422 A, 3.378 A, 3.481 A, and 3.417
ꢀ
ꢀ
ꢀ
A, respectively. As discussed above, the middle S atom of the DTT
unit is more electropositive, which causes the formation of these
multiple S–C intermolecular interaction. Due to the coplanar
structure of the styryl groups and the DTT unit, the extended p
orbit is formed and these multiple S–C intermolecular interactions
convert into S–p intermolecular interactions. At the same time,
DEP-DTT molecules also adopt a herringbone arrangement with
Acknowledgements
This work was financially supported by the National Natural Science
Foundation of China (50803015, 20672028, and 20972041), Program
for Innovation Scientists and Technicians Troop Construction
Projects of Henan Province (104100510011).
ꢁ
ꢀ
a p–p spacing of 2.575 A. The herringbone angle is about 52.0 ,
which is smaller than that of sexithiophene (66ꢁ) and nearly equal to
that of pentacene (53ꢁ).9 Compared with that of DP-DTT, it can be
concluded that DEP-DTT molecules adopt a condensed packing. It
is evident that the introduction of a C]C double bond into DEP-
DTT causes the formation of S–p intermolecular interaction and
results in a condensed molecular packing. Furthermore, the
Notes and references
1 (a) A. Dodabalapur, Mater. Today, 2006, 9, 24; (b)
C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 2006,
14, 99; (c) H. E. A. Huitema, G. H. Gelinck, J. B. P. H. Putten,
K. E. Kuijk, C. M. Hart, E. Cantatore, P. T. Herwig,
A. J. J. M. Breemen and D. M. Leeuw, Nature, 2001, 414, 599; (d)
S. R. Forrest and M. E. Thompson, Chem. Rev., 2007, 107, 923.
ꢀ
molecular long axis is also the c axis with a length of 20.8 A, which
is consistent with the layer spacing (2.0 nm) obtained from AFM
and the d-spacing (2.0 nm) obtained from X-ray diffraction patterns.
This demonstrates that DEP-DTT molecules maintain a consistent
structure in the film and single crystal. Furthermore, the formation
of S–p intermolecular interaction not only causes the molecular
arrangement to adopt a condensed packing in the single crystal and
film structures, as discussed above, but also benefits the charge
transport. The netlike S–p intermolecular interaction may act as
a spring bed to enhance the hopping ability or diversify the trans-
port of charges, as illustrated in Fig. 4. So DEP-DTT possesses
a high field-effect mobility.
ꢁ
2 (a) A. R. Murphy and J. M. J. Frechet, Chem. Rev., 2007, 107, 106; (b)
J. Zaumseil and H. Sirringhaus, Chem. Rev., 2007, 107, 1296; (c)
C. Reese and Z. Bao, Mater. Today, 2007, 10, 20; (d) A. Facchetti,
Mater. Today, 2007, 10, 28; (e) W. Shao, H. Dong, L. Jiang and
W. Hu, Chem. Sci., 2011, 2, 590.
3 (a) C. Videlot-Ackermann, J. Ackermann, H. Brisset, K. Kawamura,
N. Yoshimoto, P. Raynal, A. E. Kassmi and F. Fages, J. Am. Chem.
Soc., 2005, 127, 16346; (b) H. Meng, Z. Bao, A. J. Lovinger,
B. C. Wang and A. M. Mujsce, J. Am. Chem. Soc., 2001, 123, 9214;
(c) H. Meng, J. Zhang, A. J. Lovinger, B. C. Wang, P. G. V. Patten
and Z. Bao, Chem. Mater., 2003, 15, 1778; (d) S. Mohapatra,
B. T. Holmes, C. R. Newman, C. F. Prendergast, C. F. Frisbie and
M. D. Ward, Adv. Funct. Mater., 2004, 14, 605; (e) H. Yanagi,
Y. Araki, T. Ohara, S. Hotta, M. Ichikawa and Y. Taniguchi, Adv.
Funct. Mater., 2003, 13, 767.
4 (a) H. Tian, J. Shi, D. Yan, L. Wang, Y. Yan and F. Wang, Adv.
Mater., 2006, 18, 2149; (b) H. Klauk, M. Halik, U. Zschieschang,
G. Schmid, W. Radlik and W. Weber, J. Appl. Phys., 2002, 92, 5259;
(c) J. A. Merlo, C. R. Newman, C. P. Gerlach, T. W. Kelley,
D. V. Muyres, S. E. Fritz, M. F. Toney and C. D. Frisbie, J. Am.
Chem. Soc., 2005, 127, 3997.
In conclusion, two b-oligothiophenes derivates: DP-DTT and
DEP-DTT were synthesized. A high field-effect mobility of
2.2 cm2 Vꢀ1 sꢀ1 was obtained in DEP-DTT while DP-DTT presents
5 (a) L. Zhang, L. Tan, Z. Wang, W. Hu and D. Zhu, Chem. Mater.,
2009, 21, 1993; (b) L. Tan, L. Zhang, X. Jiang, X. Yang, L. Wang,
Z. Wang, L. Li, W. Hu, Z. Shuai, L. Li and D. Zhu, Adv. Funct.
Mater., 2009, 19, 272; (c) L. Zhang, L. Tan, W. Hu and Z. Wang, J.
Mater. Chem., 2009, 19, 8216; (d) R. Li, H. Dong, X. Zhan, H. Li,
S. Wen, W. Deng, K. Han and W. Hu, J. Mater. Chem., 2011, 21,
11335.
6 (a) C. Li, J. Shi, L. Xu, Y. Wang, Y. Cheng and H. Wang, J. Org.
Chem., 2008, 74, 408; (b) Z. Wang, J. Shi, J. Wang, C. Li, X. Tian,
Y. Cheng and H. Wang, Org. Lett., 2010, 12, 456.
7 (a) A. Rajca, S. Rajca, M. Pink and M. Miyasaka, Synlett, 2007, 1799;
(b) A. Rajca, M. Miyasaka, S. Xiao, P. J. Boratynski, M. Pink and
S. Rajca, J. Org. Chem., 2009, 74, 9105; (c) V. G. Nenajdenko,
V. V. Sumerin, K. Yu. Chernichenko and E. S. Balenkova, Org.
Lett., 2004, 6, 3437.
8 (a) Z. Wang, C. Zhao, D. Zhao, C. Li, J. Zhang and H. Wang,
Tetrahedron, 2010, 66, 2168; (b) Y. Wang, Z. Wang, D. Zhao,
Z. Wang, Y. Cheng and H. Wang, Synlett, 2007, 2390; (c)
D. Zhao, L. Xu and H. Wang, J. Henan Univ. (Nat. Sci.), 2007,
37, 468.
9 (a) G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J. Fave
and F. Garnier, Chem. Mater., 1995, 7, 1337; (b) J. Cornil,
ꢁ
J. Ph. Calbert and J. L. Bredas, J. Am. Chem. Soc., 2001, 123,
1250.
Fig. 4 The effect of the S–p intermolecular interaction on charge
transport. The line with an arrow presents the charge transport under
field-effect. The dashed line with an arrow illustrates the charge transport
assisted by the S–p intermolecular interaction.
17614 | J. Mater. Chem., 2011, 21, 17612–17614
This journal is ª The Royal Society of Chemistry 2011