J. S. Yadav et al. / Tetrahedron Letters 52 (2011) 6709–6712
6711
O
Ph
O
O
O
OR
HN
b
O
O
O
O
O
HN
O
O
O
OMe
N
H
N
H
O
OMe
R=t-Bu
19
5
a
20
R=H
c
OH
Ph
O
O
Ph
e
d
O
OH
O
HN
3
O
O
O
HN
O
O
O
O
N
H
O
OMe
O
N
H
O
OMe
22
21
Scheme 3. Synthesis of 3. Reagents and conditions: (a) TFA, CH2Cl2, rt, 4 h, quant; (b) 2,4,6-trichlorobenzoyl chloride, DIPEA, THF, 0 °C to rt, 2 h, then 6, DMAP, rt, 18 h, 80%
from 19; (c) Grubbs’ II catalyst (10 mol %), CH2Cl2, reflux, 2 h, 75%; (d) TFA, CH2Cl2, 0 °C to rt, 4 h, 80%; (e) (i) (MeO)3CH, PPTS, CH2Cl2, rt, 1 h; (ii) AcBr, CH2Cl2, rt, 2 h; (iii)
KHCO3, DME/EtOH/MeOH (6:4:1), 40 °C, 6 h, 65% from 22.
3. (a) Kobayashi, M.; Aoki, S.; Ohyabu, N.; Kurosu, M.; Wang, W.; Kitagawa, I.
potassium t-butoxide gave the target fragment A of cryptophycin-
Tetrahedron Lett. 1994, 35, 7969–7972; (b) Koiso, Y.; Morita, K.; Kobayashi, M.;
Wang, W.; Ohyabu, N.; Iwasaki, S. Chem. Biol. Interact. 1996, 102, 183–191; (c)
Kobayashi, M.; Wang, W.; Ohyabu, N.; Kurosu, M.; Kitagawa, I. Chem. Pharm.
24 6 in 76% yield. The data of a target fragment A of cryptophycin-
24 were identical in all respects to that reported in literature.13
Bull. 1995, 43, 1598–1600.
4. Trimurtulu, G.; Ogino, J.; Heltzel, C. E.; Husebo, T. L.; Jensen, C. M.; Larsen, L. K.;
The depsipeptide subunit (Fragment B) was constructed from
(D)-N-Boc-tyrosine methyl ester, b-alanine, and L-leucic acid t-
Patterson, G. M. L.; Moore, R. E.; Mooberry, S. L.; Corbett, T. H.; Valeriote, F. A. J.
Am. Chem. Soc. 1995, 117, 12030–12049.
butyl ester.7d The t-butyl group of 19 was removed with TFA and
the resulting acid 5 was coupled with alcohol 6 under Yamaguchi
conditions to afford the compound 20 in 80% overall yield.7d The
diene 20 was subjected to Grubbs’ second generation catalyst in
CH2Cl2 under reflux conditions to afford the RCM product 21 in
75% yield (Scheme 3).11 The compound 21 was subjected to TFA
in CH2Cl2 to afford diol 22 (80%). The syn-diol 22 was then con-
verted into the epoxide in three sequential steps in 65% yield. Ini-
tially, the diol was treated with trimethylorthoformate in the
presence of PPTS in CH2Cl2, followed by acetyl bromide to produce
the anticipated bromohydrin formate, which was taken for the
next step without purification. The formation of the desired epox-
ide was achieved using solid KHCO3 in a mixture of DME/ethanol/
methanol (6:4:1) at 40 °C for 6 h.11 The data of the target molecule
3, cryptophycin-24 (arenastatin A) were identical in all respects to
that reported in.4
5. (a) Kobayashi, M.; Wang, W.; Ohyabu, N.; Kurosu, M.; Kitagawa, I. Chem. Pharm.
Bull. 1994, 42, 2394–2396; (b) Ghosh, A. K.; Bischoff, A. Org. Lett. 2000, 2, 1573–
1575; (c) Chang, H. T.; Sharpless, K. B. J. Org. Chem. 1996, 61, 6456–6457; (d)
Liang, J.; Hoard, D. W.; Khau, V. V.; Martinelli, M. J.; Moher, E. D.; Moore, R. E.;
Tius, M. A. J. Org. Chem. 1999, 64, 1459–1463; (e) Varie, D. L.; Shih, C.; Hay, D.
A.; Andis, S. L.; Corbett, T. H.; Gossett, L. S.; Janisse, S. K.; Martinelli, M. J.;
Moher, E. D.; Schultz, R. M.; Toth, J. E. Bioorg. Med. Chem. Lett. 1999, 9, 369–374;
(f) Norman, B. H.; Hemscheidt, T.; Schultz, R. M.; Andis, S. L. J. Org. Chem. 1998,
63, 5288–5294; (g) Georg, G. I.; Ali, S. M.; Stella, V. J.; Waugh, W. N.; Himes, R.
H. Bioorg. Med. Chem. Lett. 1998, 8, 1959–1962; (h) Raghavan, S.; Tony, K. A. J.
Org. Chem. 2003, 68, 5002–5005.
6. (a) Eißler, S.; Stoncius, A.; Nahrwold, M.; Sewald, N. Synthesis 2006, 22, 3747–
3789; (b) Eggen, M.; Georg, G. I. Med. Res. Rev. 2002, 22, 85–101; (c) Tius, M. A.
Tetrahedron 2002, 58, 4343–4367; (d) Kotoku, N.; Narumi, F.; Kato, T.;
Yamaguchi, M.; Kobayashi, M. Tetrahedron Lett. 2007, 48, 7147–7150; (e)
Kotoku, N.; Kato, T.; Narumi, F.; Ohtani, E.; Kamada, S.; Aoki, S.; Okada, N.;
Nakagawa, S.; Kobayashi, M. Bioorg. Med. Chem. 2006, 14, 7446–7745.
7. (a) White, J. D.; Hong, J.; Robarge, L. A. Tetrahedron Lett. 1998, 39, 8779–8782;
(b) White, J. D.; Hong, J.; Robarge, L. A. J. Org. Chem. 1999, 64, 6206–6216; (c)
Eggen, M. J.; Mossman, C. J.; Buck, S. B.; Nair, S. K.; Bhat, L.; Ali, S. M.; Reiff, E. A.;
Boge, T. C.; Georg, G. I. J. Org. Chem. 2000, 65, 7792–7799; (d) Tripathy, N. K.;
Georg, G. I. Tetrahedron Lett. 2004, 45, 5309–5311; (e) Eißler, S.; Bogner, T.;
Nahrwold, M.; Sewald, N. Chem. Eur. J. 2009, 15, 11273–11287.
In conclusion, we have proved the versatility of the Prins cycli-
zation in natural product synthesis by achieving the stereoselective
synthesis of cryptophycin-24 (arenastatin A). Further applications
of the Prins cyclization in the synthesis of natural products are in
progress.
8. (a) Gardinier, K. M.; Leahy, J. W. J. Org. Chem. 1997, 62, 7098–7099; (b) Ali, S.
M.; Georg, G. I. Tetrahedron Lett. 1997, 38, 1703–1706.
9. Liang, J.; Moher, E. D.; Moore, R. E.; Hoard, D. W. J. Org. Chem. 2000, 65, 3143–
3147.
10. Pousst, C.; Haddad, M.; Larcheveque, M. Tetrahedron 2001, 57, 7163–7166.
11. Li, L. H.; Tius, M. A. Org. Lett. 2002, 4, 1637–1640.
Acknowledgments
ˇ
12. Mast, C. A.; Eißler, S.; Stoncius, A.; Stammler, H. G.; Neumann, B.; Sewald, N.
Chem. Eur. J. 2005, 11, 4664–4677.
13. Eißler, S.; Markus, N.; Neumann, B.; Stammler, H. G.; Sewald, N. Org. Lett. 2007,
9, 817–819.
14. (a) Barry, C.; St., J.; Crosby, S. R.; Harding, J. R.; Hughes, R. A.; King, C. D.; Parker,
G. D.; Willis, C. L. Org. Lett. 2003, 5, 2429–2432; (b) Yang, X. F.; Mague, J. T.; Li,
C. J. J. Org. Chem. 2001, 66, 739–747; (c) Yadav, J. S.; Reddy, B. V. S.; Sekhar, K. C.;
Gunasekar, D. Synthesis 2001, 6, 885–888; (d) Yadav, J. S.; Reddy, B. V. S.;
Reddy, M. S.; Niranjan, N. J. Mol. Catal. A: Chem. 2004, 210, 99–103; (e) Yadav, J.
S.; Reddy, B. V. S.; Reddy, M. S.; Niranjan, N.; Prasad, A. R. Eur. J. Org. Chem.
2003, 9, 1779–1783.
K.V.P. thanks CSIR New Delhi for the award of fellowships and
J.S.Y. is thankful to DST for the financial assistance under J.C. Bose
fellowship scheme. The author acknowledges the partial support
by King Saud University for Global Research Network for Organic
Synthesis (GRNOS).
References and notes
15. (a) Aubele, D. L.; Wan, S.; Floreancig, P. E. Angew. Chem., Int. Ed. 2005, 44, 3485–
3488; (b) Barry, C. S.; Bushby, N.; Harding, J. R.; Willis, C. S. Org. Lett. 2005, 7,
2683–2686; (c) Cossey, K. N.; Funk, R. L. J. Am. Chem. Soc. 2004, 126, 12216–
12217; (d) Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis, C. L. Org.
Lett. 2002, 4, 3407–3410; (e) Marumoto, S.; Jaber, J. J.; Vitale, J. P.; Rychnovsky,
S. D. Org. Lett. 2002, 4, 3919–3922; (f) Kozmin, S. A. Org. Lett. 2001, 3, 755–758;
(g) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. J. Org. Chem. 2001, 66, 4679–4686;
(h) Kopecky, D. J.; Rychnovsky, S. D. J. Am. Chem. Soc. 2001, 123, 8420–8421; (i)
Rychnovsky, S. D.; Thomas, C. R. Org. Lett. 2000, 2, 1217–1219; (j) Rychnovsky,
1. (a) Schwartz, R. E.; Hirsch, C. F.; Sesin, D. F.; Flor, J. E.; Chartrain, M.; Fromtling,
R. E.; Harris, G. H.; Salvatore, M. J.; Liesch, J. M.; Yudin, K. J. Ind. Microbiol. 1990,
5, 113–118; (b) Hirsch, C. F.; Liesch, J. M.; Salvatore, M. J.; Schwatrz, R. E.; Sesin,
D. F. U.S. Patent 4, 946, 835, 1990.
2. (a) Trimurtulu, G.; Ohtani, I.; Patterson, G. M. L.; Moore, R. E.; Corbett, T. H.;
Valeriote, F. A.; Demchik, L. J. Am. Chem. Soc. 1994, 116, 4729–4737; (b) Smith,
C. D.; Zhang, X.; Mooberry, S. L.; Patterson, G. M. L.; Moore, R. E. Cancer Res.
1994, 54, 3779–3784; (c) Barrow, R. A.; Hemscheidt, T.; Liang, J.; Paik, S.;
Moore, R. E.; Tius, M. A. J. Am. Chem. Soc. 1995, 117, 2479–2490.