Journal of the American Chemical Society
Page 4 of 5
This work was supported by the National Science Foundation
under CHE-1454116 and Temple University. We thank B.A.
Buttaro (Temple University) for assistance with biological
experiments, G.A. O’Toole (Dartmouth Medical School) for
the generous donation of strains, and Materia, Inc. for olefin
metathesis catalysts.
Pseudomonad Siderophores
A
Amphiphilic Pseudomonad
Antimicrobial
1
2
3
4
5
6
7
8
S
O
S
N
OH
N
H
N
H
N
O
H
N
N
H
O
3
N
O
O
O
NH
HO
O
O
O
O
O
OH
pyochelin
OH
O
REFERENCES
HN
N
3
NH
N
O
O
O
3
HO
(1) Cox, L. M.; Yamanishi, S.; Sohn, J.; Alekseyenko, A. V.;
Leung, J. M.; Cho, I.; Kim, S. G.; Li, H.; Gao, Z.; Mahana,
D.; Rodriguez, J. G. Z.; Rogers, A. B.; Robine, N.; Loke, P.;
Blaser, M. J. Cell 2014, 158, 705.
(2) Maxson, T.; Mitchell, D.A. Tetrahedron 2016, ASAP
DOI:10.1016/j.tet.2015.09.069
(3) The Human Microbiome Project Consortium, Nature 2012,
486, 207.
(4) Pseudomonas aeruginosa in Healthcare Settings. (2014). Re-
O
O
N
O
N
NH
HN
H
9
H
N
O
OH
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
N
HN
ferrocin A
pseudomonine
B
O
O
N
trieved
March
19,
2016,
from
100 50 25 12
6
O
HO
OH
EDTA DMSO
(5) Keohane, C. E.; Steele, A. D.; Wuest, W. M. Synlett. 2015,
26, 2739.
(6) Steele, A.D.; Knouse, K. W.; Keohane, C. E.; Wuest, W. M.
J. Am. Chem. Soc. 2015, 137, 7314.
(7) Li, W.; Santos, P. E.; Matthijs, S.; Xie, G.; Busson, R.; Cor-
nelis, P.; Rozenski, J.; De Mot, R. Chem. & Biol. 2011, 18,
1320.
(8) Overhage, J.; Bains, M.; Brazas, M. D.; Hancock, R. E. W. J.
Bacteriol. 2008, 190, 2671.
O
H2N
(-)-1
promysalin
Figure 2. A) Structures of PA siderophores pyochelin and
pseudomonine, and antimicrobial siderophore ferrocin. Putative
iron-binding atoms are colored red and fatty acid tails in blue. B)
Structure of promysalin with proposed iron contacts shown in red
(left), minimized calculated structure (middle), CAS agar plate
(right). Numbers refer to the concentration (mM) of 10 µL of
promysalin used. EDTA (10 µL of 6 mM) and DMSO (10%) are
used as controls.
(9) Wilson, R. M.; Danishefsky, S. J. J. Org. Chem. 2006, 71,
8329.
(10) Kaduskar, R. D.; Dhavan, A. A.; Dallavalle, S.; Scaglioni, L.;
Musso,
L.
Tetrahedron
2016,
ASAP
DOI:
10.1016/j.tet.2016.03.009.
Pseudomonads warrants further investigation.
(11) Hunter, R. C.; Beveridge, T. J. Appl. Environ. Microbiol.
2005, 2501.
(12) Knouse, K. W.; Wuest, W. M. J. Antibiotics 2016, ASAP
DOI: 10.1038/ja.2016.4.
(13) Szpilman, A. M.; Carreira, E. M. Angew. Chem. Int. Ed. 2010,
49, 9592.
(14) Rivken, A.; Chou, T.; Danishefsky, S. J. Angew. Chem. Int.
Ed. 2005, 44, 2838.
(15) (a) Cox, C. D.; Rinehart, K. L., Jr.; Moore, M. L.; Cook, J. C.,
Jr. Proc. Natl. Acad. Sci. USA 1981, 78, 4256 (b) Schlegel,
K.; Lex, J.; Taraz, K.; Budzikiewicz, H. Z. Naturforsch. C.
2006, 61, 263.
(16) (a) Anthoni, U.; Christophersen, C.; Nielsen, P. H.; Gram, L.;
Petersen, B. O. J. Nat. Prod. 1995, 58, 1786. (b) Sattely, E.
S.; Walsh, C. T. J. Am. Chem. Soc. 2008, 130, 12282. (c)
Wuest, W.M.; Sattely, E.S.; Walsh, C.T. J. Am. Chem. Soc.
2009, 131, 5056.
(17) (a) Pesci, E.C.; Milbank, J.B.J.; Pearson, J.P.; McKnight, S.;
Kende, A.S.; Greenberg, E.P.; Iglewski, B.H. Proc. Natl.
Acad. Sci. USA 1999, 96, 11229. (b) Bredenbach, F.; Geffers,
R.; Nimtz, M.; Buer, J.; Haussler, S. Environ. Microbiol.
2006, 8, 1318.
In conclusion, we have leveraged the power of DTS to
access a sixteen-membered library of rationally designed
synthetic promysalin analogs. The structural diversity has shed
light on the key structural features responsible for the
bioactivity and highlights the importance of the key
functionality within the hydrogen-bonding network (which are
presumably responsible for binding iron). Further, these
findings have led to the discovery of the iron-binding ability of
promysalin, hinting at a secondary role for the natural product
as a rhizosphere siderophore. In light of these results, a
potential mechanism of action via the inhibition of siderophore
transport seems feasible. Current work in our laboratory is
now focused on determining if in fact promysalin is a
siderophore and unequivocally identifying its biological target
and will be reported in due course.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, characterization data, NMR spectra
and supporting figures. The Supporting Information is availa-
ble free of charge on the ACS Publications website at
DOI:xxxx
(18) Katayama, N.; Nozaki, Y.; Okonogi, K.; Harada, S.; Ono, H.
J. Antibiotics 1993, 46, 65.
(19) Schwyn, B.; Neilands, J.B. Anal. Biochem. 1987, 160, 47.
(20) (a) Haaq, H.; Hantke, K.; Drechsel, H.; Stojiljkovi, I.; Jung,
G.; Zähner, H. J. Gen. Microbiol. 1993, 139, 2159. (b) Choi,
J. Y.; Sifri, C. D.; Goumnerov, B. C.; Rahme, L. G.; Ausubel,
F. M.; Calderwood, S. B. J. Bacteriol. 2002, 184, 952
(21) (a) Wencewicz, T.A.; Moellmann, U.; Long, T. E.; Miller, M.
J. BioMetals, 2009, 22, 633 (b) Starr, J.; Brown, M. F.;
Aschenbrenner, L.; Caspers, N.; Che, Y.; Gerstenberger, B.
S.; Huband, M.; Knafels, J. D.; Lemmon, M. M.; Li, C.;
McCurdy, S. P.; McElroy, E.; Rauckhorst, M. R.; Tomaras, A.
P.; Young, J. A.; Zaniewski, R. P.; Shanmugasundaram, V.;
AUTHOR INFORMATION
Corresponding Author
*wwuest@temple.edu
Notes
The authors declare no competing financial interest
ACKNOWLEDGMENT
Han,
S.
J.
Med.
Chem.
2014,
57,
3845.
4
ACS Paragon Plus Environment