7320
T. Sugiyama et al. / Bioorg. Med. Chem. Lett. 21 (2011) 7317–7320
the CD spectrum of PNA3-DNA hybrid is distinctly different from
those of PNA1/PNA2-DNA hybrids. These results are consistent
with the Tm data. Furthermore, the CD spectrum of single-stranded
PNA2 is similar but somewhat different from that of the
corresponding hybrid duplex, PNA2-DNA (PNA2 in Fig. 4A vs.
PNA2-DNA in Fig. 4B). The most significant differences appeared
in the 200–230 nm region. The positive band at 213 nm in sin-
gle-stranded PNA2 was red-shifted to 222 nm in PNA2-DNA du-
plex and an intense negative band was observed at 200 nm only
in the hybrid duplexes. These differences reflect conformational
changes that occur upon DNA hybridization of PNA2. Since the in-
duced secondary structure of b-Me PNA did not contribute to the
total hybridization stability, the benefit of the induced structure
in terms of DNA binding might be canceled by unfavorable steric
interactions arising from b-methyl groups in the PNA–DNA hybrid
duplex. To minimize the energy loss associated with conforma-
tional changes, further sophisticated design of PNA is required.
In conclusion, we have synthesized both the S- and the R-forms
of b-Me PNA monomers and incorporated them individually into a
10-residue mixed-base PNA sequence. PNA containing the S-form
chiral units was well suited to form a right-handed hybrid duplex
with DNA, whereas incorporation of the R-form units was detri-
mental to hybridization with DNA. CD spectra suggested that b-
backbone modification of PNA induced a right-handed helix. The
results reported here would contribute to a better understanding
of PNA chemistry and provide a basis for the future design of
PNA with improved properties.
References and notes
1. Nielsen, P. E.; Egholm, M.; Berg, R. H.; Buchardt, O. Science 1991, 154, 1497.
2. (a) Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver,
D. A.; Berg, R. H.; Kim, S. K.; Norden, B.; Nielsen, P. E. Nature 1993, 365, 566; (b)
Jensen, K. K.; Orum, H.; Nielsen, P. E.; Norden, B. Biochemistry 1997, 36, 5072;
(c) Ratilainen, T.; Holmen, A.; Tuite, E.; Nielsen, P. E.; Norden, B. Biochemistry
2000, 39, 7781.
3. Demidov, V. V.; Potaman, V. N.; Frank-Kamenetskii, M. D.; Egholm, M.;
Buchardt, O.; Sonnichsen, S. H.; Nielsen, P. E. Biochem. Pharmacol. 1994, 48,
1310.
4. Hamilton, S. E.; Iyer, M.; Norton, J. C.; Corey, D. R. Bioorg. Med. Chem. Lett. 1996,
6, 2897.
5. Kumar, V. A.; Ganesh, K. N. Acc. Chem. Res. 2005, 38, 404.
6. Corradini, R.; Sforza, S.; Tedeschi, T.; Totsingan, F.; Marchelli, R. Curr. Top. Med.
Chem. 2007, 7, 681.
7. (a) Myers, M. C.; Witschi, M. A.; Larionova, N. V.; Frank, J. M.; Haynes, R. D.;
Hara, T.; Grajkowski, A.; Appella, D. H. Org. Lett. 2003, 5, 2695; (b) Pokorski, J.
K.; Witschi, M. A.; Purnell, B. L.; Appella, D. H. J. Am. Chem. Soc. 2004, 126,
15067.
8. (a) Govindaraju, T.; Kumar, V. A.; Ganesh, K. N. Chem. Commun. 2004, 860; (b)
Govindaraju, T.; Kumar, V. A.; Ganesh, K. N. J. Am. Chem. Soc. 2005, 127, 4144.
9. (a) Englund, E. A.; Appella, D. H. Org. Lett. 2005, 7, 3465; (b) Englund, E. A.;
Appella, D. H. Angew. Chem., Int. Ed. 2007, 46, 1414.
10. Dragulescu-Andrasi, A.; Rapireddy, S.; Frezza, B. M.; Gayathri, C.; Gil, R. R.; Ly,
D. H. J. Am. Chem. Soc. 2006, 128, 10258.
11. Dueholm, K.; Petersen, K. H.; Jensen, D. K.; Egholm, M.; Nielsen, P. E.; Buchardt,
O. Bioorg. Med. Chem. Lett. 1994, 4, 1077.
12. Haaima, G.; Lohse, A.; Buchardt, O.; Nielsen, P. E. Angew. Chem., Int. Ed. 1996, 35,
1939.
13. Sforza, S.; Corradini, R.; Ghirardi, S.; Dossena, A.; Marchelli, R. Eur. J. Org. Chem.
2000, 2905.
14. Sforza, S.; Tedeschi, T.; Corradini, R.; Marchelli, R. Eur. J. Org. Chem. 2007, 5879.
15. Lagriffoule, P.; Wittung, P.; Ericksson, M.; Jensen, D. K.; Norden, B.; Buchardt,
O.; Nielsen, P. E. Chem. Eur. J. 1997, 3, 912.
16. Pokorski, J. K.; Myers, M. C.; Appella, D. H. Tetrahedron Lett. 2005, 46, 915.
17. (a) Bregant, S.; Burlina, F.; Vaissermann, J.; Chassaing, G. Eur. J. Org. Chem. 2001,
3285; (b) Bregant, S.; Burlina, F.; Chassaing, G. Bioorg. Med. Chem. Lett. 2002, 12,
1047.
Acknowledgments
18. Menchise, V.; De Simone, G.; Tedeschi, T.; Corradini, R.; Sforza, S.; Marchelli, R.;
Capasso, D.; Saviano, M.; Pedone, C. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
12021.
19. Molecular modeling was performed by MacroModel (Schrödinger). X-ray
structure (PDB code: 1NR8) in Ref. 18 was used as an initial structure.
Models were built by just replacing beta-hydrogen with methyl group through
automatically editing mode without optimizing calculation.
20. Pittel, M.; Lewinsky, R.; Christensen, J. B. Synthesis 2002, 15, 2195.
21. See Supplementary data.
This work was supported in part by Grants-in-Aid for Scientific
Research (KAKENHI, No. 20590099 to T.S. and No. 21590022 to
A.K.) from Japan Society for the Promotion of Science. The authors
would like to thank Professor Akira Suyama and Dr. Koh-ichiro
Shoda of the University of Tokyo for UV-melting measurements.
22. Wittung, P.; Nielsen, P. E.; Buchardt, O.; Egholm, M.; Norden, B. Nature 1994,
368, 561.
Supplementary data
23. PNA1 calcd for [M+2H]2+ 1427.5997, found 1427.5997; PNA2 calcd for
[M+2H]2+ 1448.6232, found 1448.6225; PNA3 calcd for [M+2H]2+ 1448.6232,
found 1448.6237.
Supplementary data associated with this article can be found, in