E isomer: First Evidence and Properties. As indicated
above, reactions of N,N-dimethylformamidine electro-
philes such as 1 (see Figure 1 for numbering) with
alkoxyamine nucleophiles promoted by certain acids led
1
to mixtures.9 In those, two sets of H NMR signals in
CDCl3 pointed to two different isomeric structures
(Figure 2): on the one hand, the expected Z isomer is
characterized by a down-shielded H-bonded NH and an
up-shielded formamidine Hf. On the other hand, another
species is characterized by a down-shielded formamidine
Hf (∼8.5 ppm) and an up-shielded NH proton (∼7.5 ppm),
which suggests that Hf experiences an electron-rich
environment while NH is not involved in any strong
H-bond. These observations are consistent with the co-
existence of the E isomer which, up to now, has never been
clearly identified (one report10a suggests that this species may
exist based on minute amounts of a side product in a 1D 1H
NMR spectrum). To test this hypothesis, 2D NOESY
experiments were conducted on a 0.9:1.0 mixture of Z/
suspected E species (2Bn) and confirm the spacial proximity
of the OCH2 and Hf protons in the new species (Figure 2),
while no such effect is present in the Z isomer.11
Figure 1. (a) Chemical structure of the ZZ isomer, crystal
structure of the ZE species; (b) reaction studied.
To understand the conditions of the formation of the
never-before observed E configurational isomer, as well
as to explore its properties, a model reaction was studied
(Figure 1b). The present manuscript reports the sys-
tematic study of this reaction, and the first isolation of
E isomers of formamidoximes and their properties.
(4) (a) Endo, T.; Nagai, D.; Monma, T.; Yamaguchi, H.; Ochiai, B.
Macromolecules 2004, 37, 2007–2009. (b) Perez, E. R.; Santos, R. H. A.;
Gambardella, M. T. P.; De Macedo, L. G. M.; Rodrigues-Filho, U. P.;
Launay, J.-C.; Douglas, D. W. J. Org. Chem. 2004, 69, 8005–8011. (c) Liu,
Y.; Jessop, P. G.; Cunningham, M.; Eckert, C. A.; Liotta, C. L. Science 2006,
313, 958–960. (d) Yamada, T.; Lukac, P. J.; George, M.; Weiss, R. G. Chem.
Mater. 2007, 19, 967–969. (e) Yamada, T.; Lukac, P. J.; Yu, T.; Weiss, R. G.
Chem. Mater. 2007, 19, 4761–4768. (f) Nagai, D.; Endo, T. J. Polym. Sci.,
Part A Polym. Chem. 2009, 47, 653–657. (g) Desset, S. L.; Hamilton, D. J.
Angew. Chem., Int. Ed. 2009, 48, 1472–1474.
(5) (a) Hosseini, M. W.; Ruppert, R.; Schaeffer, P.; De Cian, A.;
Kyritsakas, N.; Fischer, J. J. Chem. Soc., Chem. Commun. 1994,
2135–2136. (b) Auer, F.; Nelles, G.; Sellergen, B. Chem.ꢀEur. J.
2004, 10, 3232–3240. (c) Ikeda, M.; Tanaka, Y.; Hasegawa, T.;
Furusho, Y.; Yashima, E. J. Am. Chem. Soc. 2006, 128, 6806–6807.
(d) Hasegawa, T.; Morino, K.; Tanaka, Y.; Katagiri, H.; Furusho, Y.;
Yashima, E. Macromolecules 2006, 39, 482–488. (e) Katagiri, H.;
Tanaka, Y.; Furusho, Y.; Yashima, E. Angew. Chem., Int. Ed. 2007,
46, 2435–2439. (f) Maeda, T.; Furusho, Y.; Sakurai, S.-I.; Kumaki, J.;
Okoshi, K.; Yashima, E. J. Am. Chem. Soc. 2008, 130, 7938–7945. (g)
Yashima, E.; Maeda, K.; Furusho, Y. Acc. Chem. Res. 2008, 41,
1166–1180. (h) Iida, H.; Shimoyama, M.; Furusho, Y.; Yashima, E.
J. Org. Chem. 2010, 75, 417–423. (i) Ito, H.; Ikeda, M.; Hasegawa, T.;
Furusho, Y.; Yashima, E. J. Am. Chem. Soc. 2011, 133, 3419–3432.
(6) (a) Xing, L.; Wiegert, C.; Petitjean, A. J. Org. Chem. 2009, 74,
9513–9516. (b) Capela, M. dF.; Mosey, N. J.; Xing, L.; Wang, R.;
Petitjean, A. Chem.;Eur. J. 2011, 17, 4598–4612. (c) Petitjean, A.; Xing,
L.; Wang, R. CrystEngComm. 2010, 12, 1397–1400.
Figure 2. 1H NMR of 1.0:0.9 mixture of (E)-2Bn and (Z)-2Bn;
1D (top) and 2D NOESY (bottom) spectra (CDCl3*, 500 MHz).
(7) (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173–180. (b) Hill,
D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev.
2001, 101, 3893–4011. (c) Foldamers: Structure, Properties and Applica-
tions; Hecht, S., Huc, I., Ed.; Wiley-VCH: Weinheim, 2007. (d) Gong, B.
Acc. Chem. Res. 2008, 41, 1376–1386. (e) Saraogi, I.; Hamilton, A. D.
Chem. Soc. Rev. 2009, 38, 1726–1743. (f) Juwarker, H.; Suk, J; Jeong,
K.-S. Chem. Soc. Rev. 2009, 38, 3316–3325. (g) Tew, G. N.; Scott, R. W.;
Klein, M. L.; De Grado, W. F. Acc. Chem. Res. 2010, 43, 30–39.
(8) (a) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. Angew. Chem., Int.
Ed. 1994, 33, 446–448. (b) Hunter, C. A.; Low, C. M. R.; Packer, M. J.;
Spey, S. E.; Vinter, J. G.; Vysotsky, M. O.; Zonta, C. Angew. Chem., Int.
Ed. 2001, 40, 2678–2682. (c) Huc, I. Eur. J. Org. Chem. 2004, 17–29. (d)
Ballester, P.; Costa, A.; Deya, P. M.; Frontera, A.; Gomila, R. M; Oliva,
A. I.; Sanders, J. K. M.; Hunter, C. A. J. Org. Chem. 2005, 70,
6616–6622.
(9) Zhao, W. MSc thesis, Queen’s University, Canada, 2011.
(10) (a) Hayakawa, K.; Eguchi, Y.; Nakayama, A. J. Pesticide Sci.
1993, 18, 191–196. (b) Hayakawa, K.; Nakayama, A.; Nishikawa, H.;
Nakata, A.; Sano, S.; Yokota, C. J. Pesticide Sci. 1991, 16, 481–490. (c)
Hayakawa, K.; Nakayama, A.; Nishikawa, H.; Nakata, A.; Sano, S.;
Yokota, C. J. Pesticide Sci. 1992, 17, 17–25.
The pure E isomers of alkoxylamine-derived formami-
dines (1Me, 2Me, 2Bn, 3Bn) were then isolated after
reaction under specific conditions leading to high propor-
tions or exclusive formation of the E species (as described
below). Crystallization of such species and X-ray diffrac-
tion confirmed their stereochemical identity (E), as high-
lighted below with 2Bn (Figure 3).12
In the solid state, bond lengths in the E and the Z isomers
are very similar (see the Supporting Information), indicating
that, despite the absence of an intramolecular H-bond in the
ꢀ
(11) The 1H NMR signature of the Z isomer is known based on
reactions leading to the exclusive Z species, which were characterized by
2D NMR as well as X-ray crystallography (Supporting Information).
(12) for X-ray structure of (E)-1Me, see Supporting Information.
Org. Lett., Vol. 13, No. 19, 2011
5161