762
T. McGrath et al.
an aqueous solution of HPF6 (1.25 equiv., 0.43 mL) was added
dropwise. The product which precipitated was then filtered off
after 3 h, and dried under vacuum. The product obtained was a
white solid (1.27 g, 85 %), mp 155–1568C. nmax (KBr)/cmꢁ1
3081, 1610, 1530, 1431, 1359, 834, 557. dH ([D6]DMSO,
300 MHz) 8.34 (2H, d, J 8.8), 7.86 (2H, d, J 8.8), 4.72 (2H, s),
3.58–3.62 (2H, m), 3.41–3.47 (2H, m), 2.93 (3H, s), 2.14–2.16
(2H, m). dC ([D6]DMSO, 75 MHz) 149.0, 136.4, 134.5, 124.3,
64.5, 63.6, 47.8, 21.2. dP ([D6]DMSO, 121 MHz) ꢁ144.2
(septet, J 711.4). m/z (ESIþ) 221.1 (100 %, [C12H17N2O2]þ);
calcd 221.1. m/z (ESIꢁ) 144.6 (100 %, [PF6]ꢁ); calcd 144.9.
reaction products are available on the Journal’s website. The
crystallographic data for 3 have been deposited (CCDC
1010910). The data can be obtained from the Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; Fax þ44 1223 336033; Email: deposit @ccdc.cam.
Acknowledgements
We thank the Natural Sciences and Engineering Research Council of Canada
(Natural Sciences and Engineering Research Council of Canada (NSERC)
Discovery to RDS and Undergraduate Research Summer Award (USRA) to
TM), Canadian Foundation for Innovation (for the X-ray diffractometer and
NMR experiments), Nova Scotia Research and Innovation Trust, and Saint
Mary’s University (Faculty of Graduate Studies and Research) for funding
for this research.
1-Aminobenzyl-1-methylpyrrolidinium
Hexafluorophosphate (2)
FeSO4ꢂ7H2O (5.75 g, 20.69 mmol) and sodium citrate (0.44 g,
1.72 mmol) were added to water (100 mL). NaBH4 (1.30 g,
34.49 mmol) was added slowly, and the iron was reduced to
black Fe0. The water was decanted, and the nanoparticles were
washed and decanted twice more with water (50 mL). N-Methyl-
N-(p-nitrobenzyl)pyrrolidinium hexafluorophosphate (1.26 g,
3.45 mmol) was added, and the reaction was stirred at ambient
temperature for 24 h. The reaction mixture was passed through a
vacuum frit to remove water and other aqueous impurities.
The residue in the frit was washed with MeCN (3 ꢀ 20 mL).
MeCN from the washings was removed under vacuum, and the
product was dried under vacuum. The product was obtained as a
yellow solid (0.85 g, 73 %), mp 143–1448C. nmax (KBr)/cmꢁ1
3489, 3401, 2981, 1632, 1426, 835, 558. dH ([D6]DMSO,
300 MHz) 7.16 (2H, d, J 8.4), 6.60 (2H, d, J 8.4), 5.53 (s, 2NH),
4.30 (2H, s), 3.44–3.48 (2H, m), 3.26–3.30 (2H, m), 2.83 (3H, s),
2.09 (2H, s). dC ([D6]DMSO, 75 MHz) 150.8, 133.8, 115.4,
114.0, 66.1, 62.3, 47.5, 21.3. dP ([D6]DMSO, 121 MHz) ꢁ144.2
(septet, J 711.3). m/z (ESIþ) 191.2 (99.5 %, [C12H19N2]þ); calcd
191.1. m/z (ESIꢁ) 144.6 (100 %, [PF6]ꢁ); calcd 144.9. ESI
HRMS (positive mode) m/z 191.1535 (99.5 %, [C12H19N2]þ);
calcd for [C12H19N2]þ 191.1548.
References
[1] (a) K. Morita, Z. Suzuki, H. Hirose, Bull. Chem. Soc. Jpn. 1969, 42,
(b) A. B. Baylis, M. E. D. Hillman, German Patent 2155113 1972;
Chem. Abstr., 1972, 77, 34174q
(c) S. J. Connon, Chem. – Eur. J. 2006, 12, 5418. doi:10.1002/
(d) D. Basavaiah, G. Veeraraghavaiah, Chem. Soc. Rev. 2012, 41, 68.
(e) D. Basavaiah, B. S. Reddy, S. S. Badsara, Chem. Rev. 2010, 110,
[2] V. K. Aggarwal, D. K. Dean, A. Mereu, R. J. Williams, J. Org. Chem.
[3] V. K. Aggarwal, J. G. Tarver, R. McCague, Chem. Commun. 1996,
[4] V. K. Aggarwal, I. Emme, A. Mereu, Chem. Commun. 2002, 1612.
[5] P. R. Schreiner, A. Wittkopp, Org. Lett. 2002, 4, 217. doi:10.1021/
[6] Y. Sohtome, A. Tanatani, Y. Hashimoto, K. Nagasawa, Tetrahedron
[7] D. W. C. MacMillan, Nature 2008, 455, 304. doi:10.1038/
[8] (a) N. A. Larionova, A. S. Kucherenko, D. E. Siyutkin, S. G. Zlotin,
(b) G. Tang, X. Hu, H. J. Altenbach, Tetrahedron Lett. 2011, 52, 7034.
1-{4-[((3,5-Di(trifluoromethyl)anilino)carbothioyl)amino]
benzyl}-1-methylpyrrolidinium Hexafluorophosphate (3)
N-Methyl-N-(p-aminobenzyl)pyrrolidinium
hexafluoro-
phosphate (2) (0.334 g, 0.99 mmol) was dissolved in MeCN
(5 mL), and 3,5-bis(trifluoromethyl)phenyl isothiocyanate was
added (0.18 mL, 0.99 mmol) and was heated to 508C under
microwave irradiation for 2 h. Solvent was removed under
vacuum followed by column chromatography using acetone as
the eluting solvent. The acetone was removed under vacuum
affording a pale yellow solid (0.49 g, 81 %). nmax (KBr)/cmꢁ1
3378, 1614, 1537, 1473, 1384, 1280, 1178, 1133, 841, 558. dH
([D6]DMSO, 300 MHz) 10.46 (s, 1NH), 10.36 (s,1NH), 8.25
(2H, s), 7.82 (1H, s), 7.66 (2H, d, J 8.6), 7.56 (2H, d, J 8.6), 4.53
(2H, s), 3.54–3.58 (2H, m), 3.36–3.41 (2H, m), 2.91 (3H, s),
2.14–2.15 (4H, m). dC ([D6]DMSO, 75 MHz) 180.3, 142.1,
141.0, 133.4, 130.8, 130.4, 125.6, 123.9, 121.9, 65.2, 63.1, 47.7,
21.3. dP ([D6]DMSO, 121 MHz) ꢁ144.2 (septet, J 711.4). m/z
(ESIþ) 462.3 (100 %, [C21H22N3F6S]þ]; calcd 462.1. m/z (ESIꢁ)
144.6 (100 %, [PF6]ꢁ); calcd 144.9. ESI HRMS (positive mode)
m/z 462.1424 (100 %, [C21H22N3F6S]þ); calcd for
[C21H22N3F6S]þ 462.1439.
(c) X. Ding, H. Liang, C. Zhu, Y. Cheng, Tetrahedron Lett. 2010, 51,
[9] J. Hoffmann, M. Nuchter, B. Ondruschka, P. Wasserscheid, Green
[10] (a) M. K. Kundu, S. B. Mukherjee, N. Balu, R. Padmakumar, S. V.
(b) R. Octavio, M. A. de Souza, M. L. A. A. Vacsoncellos, Synth.
[11] (a) P. U. Naik, G. J. McManus, M. J. Zaworotko, R. D. Singer, Dalton
(b) S. Sonar, K. Ambrose, A. D. Hendsbee, J. D. Masuda, R. D. Singer,
(c) K. Ambrose, B. B. Hurisso, R. D. Singer, Can. J. Chem. 2013, 91,
[12] (a) A. Wittkopp, P. Schreiner, Chem. – Eur. J. 2003, 9, 407. doi:10.1002/
(b) K. M. Lippert, K. Hof, D. Gerbig, D. Ley, H. Hausmann,
S. Guenther, P. Schreiner, Eur. J. Org. Chem. 2012, 5919. doi:10.1002/
[13] A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff,
A. Wierzbicki, J. H. Davis, R. D. Rogers, Chem. Commun. 2001, 135.
Supplementary Material
Spectroscopic data, including 1H and 13C NMR spectra, of
all intermediate products, ionic thiourea derivative 3, and