Biochemistry
Article
of melittin and its orientation in phospholipids. Biochemistry 38,
15305−15316.
in membrane proteins of arbitrary depth and orientation versus
the bilayer, rather than relatively well-characterized PMPs or
antimicrobials like CM15.
(10) Andreu, D., Merrifield, R. B., Steiner, H., and Boman, H. G.
(1985) N-terminal analogs of cecropin A: Synthesis, anibacterial
activitity, and conformational properties. Biochemistry 24, 1683−1688.
(11) Andreu, D., Ubach, J., Boman, A., Wahlin, B., Wade, D.,
Merrifield, R., and Boman, H. (1992) Shortened cecropin-A melittin
hybrids: Significant size reduction retains potent antibiotic activity.
FEBS Lett. 296, 190−194.
AUTHOR INFORMATION
■
Corresponding Author
*Telephone: (610) 896-1217. Fax: (610) 896-4963. E-mail:
(12) Bhargava, K., and Feix, J. B. (2004) Membrane binding,
structure, and localization of cecropin-mellitin hybrid peptides: A site-
directed spin-labeling study. Biophys. J. 86, 329−336.
(13) Huang, H. (2006) Molecular mechanism of antimicrobial
peptides: The origin of cooperativity. Biochim. Biophys. Acta,
Biomembr. 1758, 1292−1302.
(14) Sato, H., and Feix, J. (2006) Osmoprotection of bacterial cells
from toxicity caused by antimicrobial hybrid peptide CM15.
Biochemistry 45, 9997−10007.
(15) Pistolesi, S., Pogni, R., and Feix, J. B. (2007) Membrane
insertion and bilayer perturbation by antimicrobial peptide CM15.
Biophys. J. 93, 1651−1660.
(16) Bastos, M., Bai, G., Gomes, P., Andreu, D., Goormaghtigh, E.,
and Prieo, M. (2008) Energetics and partition of two cecropin-melittin
hybrid peptides to model membranes of different composition.
Biophys. J. 94, 2128−2141.
(17) Zangger, K., Respondek, M., Goebl, C., Hohlweg, W.,
Rasmussen, K., Grampp, G., and Madl, T. (2009) Positioning of
Micelle-Bound Peptides by Paramagnetic Relaxation Enhancements. J.
Phys. Chem. B 113, 4400−4406.
(18) Lew, S., Caputo, G. A., and London, E. (2003) The effect of
interactions involving ionizable residues flanking membrane-inserted
hydrophobic helices upon helix-helix interaction. Biochemistry 42,
10833−10842.
(19) McMahon, H. A., Alfieri, K. N., Clark, K. A. A., and Londergan,
C. H. (2010) Cyanylated Cysteine: A Covalently Attached Vibrational
Probe of Protein−Lipid Contacts. J. Phys. Chem. Lett. 1, 850−855.
(20) Bischak, C. G., Longhi, S., Snead, D. M., Costanzo, S., Terrer, E.,
and Londergan, C. H. (2010) Probing Structural Transitions in the
Intrinsically Disordered C-Terminal Domain of the Measles Virus
Nucleoprotein by Vibrational Spectroscopy of Cyanylated Cysteines.
Biophys. J. 99, 1676−1683.
(21) Fafarman, A. T., Sigala, P. A., Herschlag, D., and Boxer, S. G.
(2010) Decomposition of Vibrational Shifts of Nitriles into
Electrostatic and Hydrogen-Bonding Effects. J. Am. Chem. Soc. 132,
12811−12813.
(22) Fafarman, A. T., Webb, L. J., Chuang, J. I., and Boxer, S. G.
(2006) Site-specific conversion of cysteine thiols into thiocyanate
creates an IR probe for electric fields in proteins. J. Am. Chem. Soc. 128,
13356−13357.
(23) Oh, K. I., Choi, J. H., Lee, J. H., Han, J. B., Lee, H., and Cho, M.
(2008) Nitrile and thiocyanate IR probes: Molecular dynamics
simulation studies. J. Chem. Phys. 128, 154504.
(24) Sigala, P. A., Fafarman, A. T., Bogard, P. E., Boxer, S. G., and
Herschlag, D. (2007) Do ligand binding and solvent exclusion alter the
electrostatic character within the oxyanion hole of an enzymatic active
site? J. Am. Chem. Soc. 129, 12104−12105.
(25) Stafford, A. J., Ensign, D. L., and Webb, L. J. (2010) Vibrational
Stark Effect Spectroscopy at the Interface of Ras and Rap1A Bound to
the Ras Binding Domain of RalGDS Reveals an Electrostatic
Mechanism for Protein-Protein Interaction. J. Phys. Chem. B 114,
15331−15344.
(26) Maienschein-Cline, M. G., and Londergan, C. H. (2007) The
CN stretching band of aliphatic thiocyanate is sensitive to solvent
dynamics and specific solvation. J. Phys. Chem. A 111, 10020−10025.
(27) Edelstein, L., Stetz, M. A., McMahon, H. A., and Londergan, C.
H. (2010) The Effects of α-Helical Structure and Cyanylated Cysteine
on Each Other. J. Phys. Chem. B 114, 4931−4936.
Funding
K.N.A. acknowledges a summer fellowship made possible by a
grant from the Howard Hughes Medical Institute to Haverford
College. A.R.V. acknowledges a scholarship from the Arnold
and Mabel Beckman Foundation. C.H.L. acknowledges a
Cottrell College Science Award from Research Corp., a New
Faculty Start-Up Award from the Dreyfus Foundation, and
Grant R15-GM088749 from the National Institute of General
Medical Sciences.
ACKNOWLEDGMENTS
■
Dr. Jimmy Feix is thanked by K.N.A. for important suggestions
at a formative stage of this work.
ABBREVIATIONS
■
AMPs, antimicrobial peptides; ATR, attenuated total reflec-
tance; BPL, bacterial polar lipids, extracted from E. coli; C*, β-
thiocyanatoalanine or cyanylated cysteine; CD, far-UV circular
dichroism; CM15, sequence hybrid of residues 1−7 of cecropin
and residues 2−9 of mellitin; DPC, dodecylphosphatidylcho-
line; DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine;
DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine; EPR, elec-
tron paramagnetic resonance; FTIR, Fourier transform infrared
spectroscopy; LUVs, GUVs, and SUVs, large, giant, and small
unilamellar vesicles, respectively; MTSL, S-(2,2,5,5-tetramethyl-
2,5-dihydro-1H-pyrrol-3-yl)methyl methanesulfonothioate;
NMR, nuclear magnetic resonance; PMPs, peripheral mem-
brane proteins; SDSL, site-directed spin labeling.
REFERENCES
■
(1) Caffrey, M. (2009) Crystallizing Membrane Proteins for
Structure Determination: Use of Lipidic Mesophases. Annu. Rev.
Biophys. 38, 29−51.
(2) Opella, S. J., and Marassi, F. M. (2004) Structure determination
of membrane proteins by NMR spectroscopy. Chem. Rev. 104, 3587−
3606.
(3) Klug, C. S., and Feix, J. B. (2008) Methods and applications of
site-directed spin labeling EPR spectroscopy. In Biophysical Tools for
Biologists: Vol. 1. In Vitro Techniques, pp 617−658, Elsevier Academic
Press Inc., San Diego.
(4) Langen, R., Oh, K. J., Cascio, D., and Hubbell, W. L. (2000)
Crystal structures of spin labeled T4 lysozyme mutants: Implications
for the interpretation of EPR spectra in terms of structure. Biochemistry
39, 8396−8405.
(5) Melo, M., Ferre, R., and Castanho, M. (2009) Antimicrobial
peptides: Linking partition, activity and high membrane-bound
concentrations. Nat. Rev. Microbiol. 7, 245−250.
(6) Brogden, K. A. (2005) Antimicrobial peptides: Pore formers or
metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238−250.
(7) Huang, H. (2000) Action of antimicrobial peptides: Two-state
model. Biochemistry 39, 8347−8352.
(8) Sato, H., and Felix, J. (2006) Peptide-membrane interactions and
mechanisms of membrane destruction by amphipathic α-helical
antimicrobial peptides. Biochim. Biophys. Acta 1758, 1245−1256.
(9) Sharon, M., Oren, Z., Shai, Y., and Anglister, J. (1999) 2D-NMR
and ATR-FTIR study of the structure of a cell-selective diastereomer
11107
dx.doi.org/10.1021/bi200903p | Biochemistry 2011, 50, 11097−11108