236
S. Jin et al. / Journal of Molecular Structure 1004 (2011) 227–236
4. Conclusion
References
[1] D.T. Bowron, J.L. Finney, A.K.J. Soper, J. Am. Chem. Soc. 128 (2006) 5119.
[2] (a) D.N. Reinhoudt, M. Crego-Calama, Science 295 (2002) 2403;
(b) A.L. Maksimov, D.A. Sakharov, T.Y. Filippova, A.Y. Zhuchkova, E.A.
Karakhanov, Ind. Eng. Chem. Res. 44 (2005) 8644;
(c) J.W. Bell, N.M. Hext, Chem. Soc. Rev. 33 (2004) 589.
[3] C.J. Janiak, J. Chem. Soc., Dalton Trans. (2000) 3885.
[4] J.M. Lehn, J.L. Atwood, J.E.D. Davies, D.D. MacNicol, F. Vögtle (Eds.),
Comprehensive Supramolecular Chemistry, Pergamon, Oxford, UK, 1996.
[5] N. Shan, A.D. Bond, W. Jones, Cryst. Eng. 5 (2002) 9.
[6] B.R. Bhogala, S. Basavoju, A. Nangia, CrystEngComm 7 (2005) 551.
[7] E. Weber, Design of Organic Solids, Topics in Current Chemistry, vol. 198,
Springer, Berlin, 1998.
Five organic salts with different topologies have been prepared
and structurally characterized. All five examples involve proton
transfer from the carboxylic acids to the N atom of the bis(imidaz-
ole) molecules, with subsequent hydrogen bonding linking the cat-
ion and the anion to give 3D framework structures (3D network
structure, 3D layer structure, and 3D ABAB layer structure) in all
cases. The most common hydrogen-bonded R22ð8Þ graph set has
been observed in salts 1–3.
This study has demonstrated that the NAHꢀ ꢀ ꢀO hydrogen bond
is the primary intermolecular force in a family of structures con-
taining the COOHꢀ ꢀ ꢀim synthons, except the salt 5. Since the poten-
tially hydrogen bonding phenol group is present in the ortho
position to the carboxylate group in 1–4, it forms the more facile
intramolecular OAHꢀ ꢀ ꢀO hydrogen bond. Except the classical
hydrogen bonding interactions, the secondary propagating interac-
tions also play an important role in structure extension. All salts
possess CAHꢀ ꢀ ꢀO, and CH2ꢀ ꢀ ꢀO associations. Two types of second-
ary CAHꢀ ꢀ ꢀO, and CH2ꢀ ꢀ ꢀO hydrogen bonds were observed based
upon their geometric preferences, intra- and interchain interac-
tions. Based upon an analysis of the metrics displayed by each
set of interactions, it seems that intra- and interchain CAHꢀ ꢀ ꢀO/
CH2AO interactions are of equal structural importance. There are
[8] B.R. Bhogala, Cryst. Growth. Des. 3 (2003) 547.
[9] M. Du, Z.H. Zhang, X.J. Zhao, Cryst. Growth. Des. 5 (2005) 1199.
[10] T.R. Shattock, P. Vishweshwar, Z.Q. Wang, M.J. Zaworotko, Cryst. Growth. Des.
5 (2005) 2046.
[11] M. Sarkar, K. Biradha, Cryst. Growth. Des. 6 (2006) 202.
[12] A. Ballabh, D.R. Trivedi, P. Dastidar, Cryst. Growth. Des. 5 (2005) 1545.
[13] D.R. Trivedi, P. Dastidar, Cryst. Growth. Des. 6 (2006) 1022.
[14] C.B. Aakeröy, A.M. Beatty, B.A. Helfrich, Angew. Chem. Int. Ed. 40 (2001) 3240.
[15] J.C. MacDonald, P.C. Dorrestein, M.M. Pilley, Cryst. Growth. Des. 1 (2001) 29.
[16] D.R. Trivedi, A. Ballabh, P. Dastidar, CrystEngComm 5 (2003) 358.
[17] Y. Akhriff, J. ServerCarrio, J. Garcia-Lozano, J.V. Folgado, A. Sancho, E. Escriva, P.
Vitoria, L. Soto, Cryst. Growth. Des. 6 (2006) 1124.
[18] C.B. Aakeröy, D.J. Salmon, B. Leonard, J.F. Urbina, Cryst. Growth. Des. 5 (2005)
865.
[19] C.B. Aakeröy, D.J. Salmon, M.M. Smith, J. Desper, Cryst. Growth. Des. 6 (2006)
1033.
[20] L.E. Cheruzel, M.S. Mashuta, R.M. Buchanan, Chem. Commun. 2223 (2005).
[21] P.V. Roey, K.A. Bullion, Y. Osawa, R.M. Bowman, D.G. Braun, Acta Crystallogr.
C47 (1991) 1015.
[22] B.Q. Ma, P. Coppens, Cryst. Growth. Des. 4 (2004) 1377.
[23] S.W. Jin, W.B. Zhang, D.Q. Wang, H.F. Gao, J.Z. Zhou, R.P. Chen, X.L. Xu, J. Chem.
Crystallogr. 40 (2010) 87.
[24] S.W. Jin, D.Q. Wang, Z.J. Jin, L.Q. Wang, Polish J. Chem. 83 (2009) 1937.
[25] S.W. Jin, D.Q. Wang, J. Chem. Crystallogr. 40 (2010) 914.
[26] J.L. Lavandera, P. Cabildo, R.M. Claramunt, J. Heterocycl. Chem. 25 (1988) 771.
[27] V.W. Schutze, H. Schubert, J. Prakt. Chem. 8 (1959) 307.
[28] R.H. Blessing, Acta Crystallogr. A51 (1995) 33.
CHA
5 possess
OA interactions in 2, 3, and 4 with the OACg distances in the
p
interactions in compounds 3, 4, and 5. Organic salts 4, and
pAp
interactions. There also exist strong intermolecular
p
range of 2.967–3.158 Å.
In conclusion, we have shown that higher-dimensional struc-
tures (3D) can be constructed from discrete ions by the collective
noncovalent interactions such as strong directional hydrogen
bond, OAp, CHAO/CH2AO, CHAp, and pAp interactions.
[29] G.M. Sheldrick, SADABS ‘‘Siemens Area Detector Absorption Correction’’,
University of Göttingen, Göttingen, Germany, 1996.
[30] SHELXTL-PC, version 5.03, Siemens Analytical Instruments, Madison, WI.
[31] C.B. Aakeröy, J. Desper, M.E. Fasulo, CrystEngComm 8 (2006) 586.
[32] D.H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry, fifth
ed., McGraw-hill, London, 1995.
Supporting information
[33] A.L. Gillon, A.G. Orpen, J. Starbuck, X.M. Wang, Y. Rodríguez-Martín, C. Ruiz-
Pérez, Chem. Commun. 2287 (1999).
[34] M. Felloni, A.J. Blake, P. Hubberstey, C. Wilson, M. Schröder, CrystEngComm 4
(2002) 483.
[35] M. Sundaralingam, L.H. Jensen, Acta Crystallogr. 18 (1965) 1053.
[36] G. Simith, A.W. Hartono, U.D. Wermuth, P.C. Healy, J.M. White, A.D. Rae, Aust. J.
Chem. 58 (2005) 47.
[37] J. Bernstein, R.E. Davis, L. Shimoni, N.L. Chang, Angew. Chem. Int. Ed. 34 (1995)
1555.
Crystallographic data for the structural analysis have been
deposited with the Cambridge Crystallographic data center, CCDC
Nos. 809891 for 1, 809889 for 2, 809894 for 3, 809678 for 4, and
809890 for 5. Copies of this information may be obtained free of
charge from the +44(1223)336 033 or Email: deposit@ccdc.cam.a-
[38] S. Baskar Raj, V. Sethuraman, S. Francis, M. Hemamalini, P. Thomas Muthiah, G.
Bocelli, A. Cantoni, U. Rychlewska, B. Warzajtis, CrystEngComm 5 (2003) 70.
[39] G. Smith, U.D. Wermuth, P.C. Healy, J. Chem. Crystallogr. 36 (2006) 841.
[40] G. Smith, U.D. Wermuth, J.M. White, Acta Cryst. C61 (2005) o105.
[41] C. Biswas, M.G.B. Drew, D. Escudero, A. Frontera, A. Ghosh, Eur. J. Inorg. Chem.
(2009) 2238.
[42] M. Królikowska, J. Garbarczyk, Z. Kristallogr. NCS 220 (2005) 103.
[43] S.H. Dale, M.R.J. Elsegood, M. Hemmings, A.L. Wilkinson, CrystEngComm 6
(2004) 207.
Acknowledgements
We gratefully acknowledge the financial support of the
Education Office Foundation of Zhejiang Province (Project No.
Y201017321) and the financial support of the Zhejiang A & F Uni-
versity Science Foundation (Project No. 2009FK63).