M. Duan et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2993–2996
2995
O
N
N
N
R
O
N
S
O
O
O
O
O
S
N
H
N
N
N
O
Et
O
O
a
b
R
O
9c
10
11
9b
9d
Scheme 2. Reagents and conditions: (a) NaOMe, MeOH, 50 °C, 2 h, 40%; (b) CDI, THF, 60 °C, 1.5 h, 11%.
stable gt1a and gt1b replicon assays, consistent with its moderate
potency in the wt transient replicon.
Table 1
Anti-HCV activities of analogs and ITMN-191
Compounds in this series had low permeability in the parallel
artificial membrane permeability assay (PAMPA), as exemplified
by 11 (Papp = 12 nM/s at pH 7.05), and perhaps for that reason
exhibited only low to moderate bioavailability in the rat PK model
(F = 12%). Compound 11 was also characterized by high clearance
in rat PK model (Cl = 53.7 mL/min/kg).
Compound
R
NS3/4A 1a IC50 (nM)
Replicon EC50 (nM)
1a 1b
O
9a
9b
9c
31.0
107.2
195.0
5.0
251.2
50.1
0.8
N
H
O
In summary, we described novel P3-oxo inhibitors of HCV NS3/
4A serine protease. Novel hydroxy 10 and carbonyl-imidazole 11
compounds were found to be essentially equipotent to danoprevir
(ITMN-191) in the wt gt1a and gt 1b replicon assays (Table 1) and
had a noticeably improved viral mutant profiles EC50(mutant)/
EC50(wt), Table 2. The tert-butyl-carbonate 9c, which was less po-
tent in both stable replicon assays (Table 1), has a near-flat potency
profile in the transient mutant assay (Table 2), and as such is an
attractive lead molecule for further potency optimization towards
HCV protease inhibitors with high potency across all HCV protease
mutants. Further PK improvement will also be necessary for this
class to be further developable. This can potentially be accom-
plished by reducing the polar surface area PSA in this class (PSA
of 11 is 201), which should improve compound permeability and
bioavailability. The biological properties of compounds in this
class, especially of 9c, 10 and 11 warrant further optimization.
These efforts will be described in due course.
79.4
39.8
O
O
O
O
9d
10
56.2
6.8
10.0
1.0
3.2
0.8
N
O
H
N
O
O
11
3.2
0.4
0.8
1.0
0.5
1.1
N
O
ITMN-191
ITMN-191 lit.4a NS3/4A 1a IC50 = 0.2 nM, replicon 1b EC50 = 1.8 nM.
Table 2
Genotype 1b transient replicon activity of 9a–d, 10, 11 and ITMN-191a
Compound
1b transient replicon EC50 (nM)
A156S A156T A156V D168A D168V R155K
References and notes
wt
1.2
63.1
9a
9b
9c
9d
10
11
2.5
29.4
63.1 118.6
84.6
397.2
70.8
90.2
2.6
322.5
434.4
73.7
657.7
3.2
462.2 1071.5
323.6
1. White, P. W.; Llinas-Brunet, M.; Bos, M. Prog. Med. Chem. 2006, 44, 65.
2. (a) Cohen, J. Science 1999, 285, 26; (b) Alter, M. J.; Kruszon-Mran, D.; Nainan, O.
V.; McQuillan, G. M.; Gao, F.; Moyer, L. A.; Kaslow, R. A.; Margolis, H. S. N. Engl. J.
Med. 1999, 341, 566.
514.0
88.1
693.5 3981.0
131.8
170.5
7.1
1.3
0.5
0.1
9.7
0.1
0.1
1.6
2152.8 3981.1 1484.5
3. (a) Neumann, A. U.; Lam, N. P.; Dahari, H.; Gretch, D. R.; Wiley, T. E.; Layden, T.
J.; Perelson, A. S. Science 1998, 282, 103; (b) Rosen, H. R.; Gretch, D. R. Mol. Med.
Today 1999, 5, 393; (c) Di Bisceglie, A. M.; Mchutchison, J.; Rice, C. M.
Hepatology 2002, 35, 224.
4. (a) Seiwert, S. D.; Andrews, S. W.; Jiang, Y.; Serebryany, V.; Tan, H.; Kossen, K.;
Rajagopalan, P. T.; Misialek, S.; Stevens, S. K.; Stoycheva, A.; Hong, J.; Lim, S. R.;
Qin, X.; Rieger, R.; Condroski, K. R.; Zhang, H.; Do, M. G.; Lemieux, C.; Hingorani,
G. P.; Hartley, D. P.; Josey, J. A.; Pan, L.; Beigelman, L.; Blatt, L. M. Antimicrob.
Agents Chemother. 2008, 52, 4432; (b) WO 2007015824.
62.8
70.0
48.5
45.7
151.0
24.5
60.3
47.9
80.8
2.8
3.9
ITMN-191
6.8
8.3
a
Literature data for ITMN-191 EC50 (nM): wt = 1.5, A156T = 4, D168V = 12,
R155K = 180 (Seiwert et al., poster #938, EASL 2009, Copenhagen, April 22–26,
2009).
5. Raboisson, P.; de Kock, H.; Rosenquist, A.; Nilsson, M.; Salvador-Oden, L.; Lin, T.
I.; Roue, N.; Ivanov, V.; Wähling, H.; Wickström, K.; Hamelink, E.; Edlund, M;
Vrang, L.; Vendeville, S.; Van de Vreken, W.; McGowan, D.; Tahri, A.; Hu, L.;
Boutton, C.; Lenz, O.; Delouvroy, F.; Pille, G.; Surleraux, D., Wigerinck, P.;
Samuelsson, B.; Simmen, K. Bioorg. Med. Chem. Lett. 2008, 18, 4853.
6. (a) Cooper, J. P.; Duan, M.; Grimes, R. M.; Kazmierski, W. M.; Tallant, M. D. WO
2010088394.; (b) Kazmierski, W. M.; Hamatake, R.; Duan, M.; Wright, L. L.;
Smith, G. K.; Jarvest, R. L.; Ji, J.-J.; Cooper, J. P.; Tallant, M. D.; Crosby, R. M.;
Creech, K.; Wang, A.; Li, X.; Zhang, S.; Liu, Y.; Zhang, Y.-K.; Liu, L.; Ding, C. Z.;
Zhou, Y.; Plattner, J. J.; Baker, S. J.; Bu, W.; Liu, L. J. Med. Chem., accepted for
under physiological condition, resulting in potential H-bond
donating capability of this moiety.
Compounds were also evaluated in the wild type (wt) and mu-
tant genotype 1b transient replicon assays,11 Table 2. Compounds
10 and 11 were essentially equipotent to danoprevir (ITMN-191).
Carbamates 9a, 9b, 9d and to a lesser degree 9c were less potent,
particularly against mutants A156V, D168A and D169V.
The ratio of EC50(mutant)/EC50(wt) may be relevant in com-
pound dose consideration to provide sufficient coverage for all
relevant mutants. Danoprevir (ITMN-191), 9a, 9b, 9d, 10 and 11
exhibited relatively high mutant/wt ratios for some mutants, espe-
cially for D168A, D168V and R155K, Table 2. On the other hand, the
t-butyl-carbonate compound 9c had a near-flat profile in this assay.
Compound 9c had only modest potency in the wt enzyme and
7. See patent for preparation: Cooper, J. P.; Duan, M.; Grimes, R. M.; Kazmierski,
W. M.; Tallant, M. D. WO 2010088394.
8. (a) Compounds were assayed in the fluorescence enzymatic assay using HCV NS3/
4A 1a protease domain: Conditions: 0.75 nM enzyme (1a domain), 2
lM NS4A,
0.5 peptide substrate (Ac-DE-Dap(QXL520)-EE-Abu- -[COO]-AS-C(5-
lM
w
FAMsp)-NH2 is the FRET substrate purchased from Anaspec Inc., San Jose, CA)
in 50 mM HEPES, 20% sucrose, 5 mM DTT, and 0.05% NP-40. Wavelengths of
490 ex and 520 em were used on a Molecular Devices plate reader to measure