construction to build the C ring. Lipase catalyzed asym-
metric induction was also conceived as a key step toward
the target.9,10
The forward strategy started from commercially avail-
able 1-tetralone (7), which was converted to the di-MOM
derivative 8 in decent yields, in a process amenable to
scaleup.11 Classical formylation of 8 using DMF and t-
BuLi smoothly afforded the di-MOM protected aldehyde
9. Aldehyde 9 was subjected to aldol reaction with
acetone in the presence of 10% aqueous NaOH, furnish-
ing the enone which was reduced with NaBH4 into
racemic allyl alcohol 6 in 88% yield over two steps
(Scheme 2). Attention was then directed to introduction
of the chiral hydroxyl group via Burkholderia cepacia
lipase-mediated (Amano Lipase PS, Sigma-Aldrich)
resolution.10
Scheme 1. Retrosynthetic Analysis of Beraprost
After successful enzymatic resolution, using lipase and
vinyl acetate in tert-butylmethyl ether at room temperature,
(R)-acetate 10 was obtained in 45% yield and ∼97% ee as
confirmed by HPLC analysis.12 The hydrolysis of the acetyl
group in 10 resulted in chiral alcohol (þ)-6 in 85% yield.
4-Methyl 3-pentenoic acid 11 was coupled with (þ)-6 in the
presence of DCC/DMAP to furnish ester 5. The other
enantiomer (ꢀ)-6 was also converted to the desired 5 via
esterification with 11 under Mitsunobu conditions13 (total
51% yield of 5 from rac-10).
Scheme 2. Preparation of Intermediate 5
(6) (a) Review: Saibal, D.; Chandrasekhar, S.; Yadav, J. S.; Gree, R.
Chem. Rev. 2007, 107, 3286. (b) Review: Collins, P. W.; Djuric, S. W.
Chem. Rev. 1993, 93, 1533. (c) Jahn, U.; Galano, J. M.; Durand, T.
Angew. Chem., Int. Ed. 2008, 47, 5894. (d) Nagase, H.; Matsumoto, K.;
Nishiyama, H. Yuki Gousei Kagaku Kyoukaishi 1999, 57, 1116. (e)
Nishino, S.; Nagase, H.; Kanou, K.; Aoki, S.; Kanabayashi, Y. Yaku-
gaku Zasshi 1997, 117, 509. Synthesis of (()-Beraprost:(f) Ohno, K.;
Nagase, H.; Matsumoto, K. European Patent EP84,-856, 1983; Eur-
opean patent specification EP 1 519 930 B1; Chem. Abstr. 1984, 100,
51356m. (g) Ohno, K.; Nishiyama, H.; Nagase, H.; Matsumoto, K.;
Ishikawa, M. Tetrahedron Lett. 1990, 31, 4489. Synthesis of optically
active Beraprost:(h) Nagase, H.; Yoshiwara, H.; Tajima, A.; Ohno, K.
Tetrahedron Lett. 1990, 31, 4493. (i) Wakita, H.; Yoshiwara, H.; Tajima,
A.; Kitano, Y.; Nagase, H. Tetrahedron: Asymmetry 1999, 10, 4099. (i)
Wakita, H.; Yoshiwara, H.; Nishiyama, H.; Nagase, H. Heterocycles
2000, 53, 1085. (j) Wakita, H.; Yoshiwara, H.; Kitano, Y.; Nishiyama,
H.; Nagase, H. Tetrahedron: Asymmetry 2000, 11, 2981. (k) Yukio, Y.;
Yoshitaka, S.; Sentaro, O.; Fumie, S. J. Chem. Soc., Chem. Commun.
1995, 811. (l) Richard, C. L.; Nam, H. L. J. Org. Chem. 1991, 56, 6253.
(m) Kazuhiro, H.; Kazuyuki, S.; Hisanori, N.; Takeshi, S.; Yasuyuki, K.
Org. Lett. 2003, 5, 3703.
The desired IrelandꢀClaisen rearrangement was per-
formed on 5 with LDA/TBSCl and HMPA; this resulted
in selective formation of the (Z)-silyl ketene acetal prior
to rearrangement at ꢀ78 °C and furnished the required
stereoisomer 12 (Scheme 3). This can be explained by
invoking the chairlike transition state TS-1. A steady
increase in temperature to 25 °C followed by an acidic
workup, gave the desired rearrangement product 12
which was further derivatized as the methyl ester 4
(7) (a) Tatjana, G. K.; Martina, P.; Svjetlana, K.; Damjan, M.; Janez,
P.; Tobias, L. R.; Simon, M. A.; Silvana, R. M. Molecules 2011, 16, 5113.
(b) Carl, F. N.; Stefan, B. Chem. Soc. Rev. 2008, 37, 1218.
(8) (a) Hyojin, K.; Eunkyung, K.; Jae Eun, p.; Deukjoon, K.;
Sanghee, K. J. Org. Chem. 2004, 69, 112. (b) Yanling, S.; Soonho, H.;
Ping, G.; Deukjoon, K.; Sanghee, K. Org. Lett. 2008, 10, 269.
(9) (a) Thomas, R. H.; Hongyu, Z. Org. Lett. 1999, 1, 1123. (b)
Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413. (c) Schuster, M.;
Blechert, S. Angew. Chem., Int. Ed. Engl. 1997, 36, 2037. (d) Ulman, M.;
Grubbs, R. H. Organometallics 1998, 17, 2484. (c) Thomas, N.; Michael,
B.; Kai, D.; Paul, K. Org. Process Res. Dev. 2005, 9, 513. (d) Nathan,
K. Y.; Vittorio, F.; Ioannis, N. H.; Nizar, H.; Rogelio, P. F.; Fabrice, G.;
Xiao-jun, W.; Xudong, W.; Robert, D. S.; Xuwu, F.; Victor, F.; Yibo,
X.; Jonathan, T.; Li, Z.; Jinghua, X.; Lana, L. S. K.; Jana, V.; Michael,
D. R.; Earl, M. S.; Michael, J. J. Org. Chem. 2006, 71, 7133.
(12) See the Supporting Information for details.
(13) The enantiomeric purity of (S)-isomer (ꢀ)-6 was improved by
repeated resolution (twice), which was subjected to esterification with 11
under Mitsunobu inversion reaction conditions to realize compound 5 in
65% yield.
(10) Brenna, E.; Fuganti, C.; Galli, F. G.; Passoni, M.; Serra, S.
Tetrahedron: Asymmetry 2003, 14, 2401.
(11) (a) Quinkert, G.; Billhardt, U. M.; Jakob, H.; Fischer, G.;
Glenneberg, J. Helv. Chim. Acta 1987, 70, 822. (b) Cambie, R. C.;
MitchellLorna, H.; Rutledge, P. S. Aust. J. Chem. 1998, 51, 1167. (c)
Youssefyeh, R. D.; Campbell, H. F.; Klein, S.; Airey, J. E.; Darkes, P.
J. Med. Chem. 1992, 35, 895. (d) Masahiko, I.; Yoshiyuki, N.; Kakuzo, I.
Angew. Chem., Int. Ed. Engl. 1994, 33, 1163.
300
Org. Lett., Vol. 14, No. 1, 2012