in 1/T1 corresponds to higher signal intensity and, therefore, is
advantageous for imaging. These imaging experiments demon-
strate that cryptates 1–3 are effective contrast agents at ultra-high
field strengths.
L. V. Elst, H. A. Mayer, N. K. Logothetis and G. Angelovski, Eur. J.
Inorg. Chem., 2009, 3298.
6 N.-D. H. Gamage, Y. Mei, J. Garcia and M. J. Allen, Angew.
Chem., Int. Ed., 2010, 49, 8923.
´
7 (a) E. To
´
216–217, 363; (b) P. Caravan, E. Toth, A. Rockenbauer and
´
th, L. Burai and A. E. Merbach, Coord. Chem. Rev., 2001,
´
We found that EuII-based complexes 1–3 are effective con-
trast agents at ultra-high field strengths likely because of the
interplay of water-exchange rate, rotational correlation rate,
and the presence of two inner-sphere water molecules. To the
best of our knowledge, these complexes are among a few
reported examples of contrast agents that display increased
r1 values at ultra-high field strengths relative to lower fields.
Further studies on the physical properties of EuII-containing
cryptates are being performed in our laboratory to better
understand these results. We expect that our findings will be
a step toward addressing the lack of positive contrast agents
for ultra-high field strength MRI, and we are currently study-
ing EuII cryptates in more detail to obtain a more complete
understanding of the structure–function relationships as well as
the thermodynamic and kinetic stabilities of these complexes.
This research was supported by startup funds from Wayne
State University (WSU) and a Pathway to Independence
Career Transition Award (R00EB007129) from the National
Institute of Biomedical Imaging and Bioengineering of the
National Institutes of Health. J. G. was supported by a
Thomas C. Rumble Graduate Fellowship from WSU, and
M. J. A. gratefully acknowledges a Schaap Faculty Scholar
Award. We thank Prabani Dissanayake for acquiring induc-
tively coupled plasma mass spectrometry data, Jeremiah
Moore for helpful discussions, and Latif Zahid and Yimin
Shen for performing imaging experiments.
A. E. Merbach, J. Am. Chem. Soc., 1999, 121, 10403; (c) P. Caravan
and A. E. Merbach, Chem. Commun., 1997, 2147.
´
´
8 L. Burai, R. Scopelliti and E. Toth, Chem. Commun., 2002, 2366.
9 (a) J. Kowalewski, A. Egorov, A. Laaksonen, S. Nikkhou Aski,
G. Parigi and P.-O. Westlund, J. Magn. Reson., 2008, 195, 103;
(b) D. Kruk and J. Kowalewski, J. Chem. Phys., 2002, 116, 4079;
(c) T. Nilsson, G. Parigi and J. Kowalewski, J. Phys. Chem. A,
2002, 18, 4476; (d) J. Svoboda, T. Nilsson, J. Kowalewski, P.-O.
Westlund and P. T. Larsson, J. Magn. Reson., Ser. A, 1996,
121, 108.
10 (a) E. J. Werner, S. Avedano, M. Botta, B. P. Hay, E. G. Moore,
S. Aime and K. N. Raymond, J. Am. Chem. Soc., 2007, 129, 1870;
(b) S. Torres, J. A. Martins, J. P. Andre
´
E. Brucher, L. Helm, E. To
´
, G. A. Pereira, R. Kiraly,
´
th and C. F. G. C. Geraldes, Eur. J.
¨
Inorg. Chem., 2007, 5489; (c) V. C. Pierre, M. Botta and K. N.
Raymond, J. Am. Chem. Soc., 2005, 127, 504; (d) S. Laus,
´
´
R. Ruloff, E. Toth and A. E. Merbach, Chem.–Eur. J., 2003,
9, 3555; (e) D. M. J. Doble, M. Botta, J. Wang, S. Aime, A. Barge
and K. N. Raymond, J. Am. Chem. Soc., 2001, 123, 10758;
(f) S. M. Cohen, J. Xu, E. Radkov and K. N. Raymond, Inorg.
Chem., 2000, 39, 5747; (g) S. Aime, A. Barge, A. Borel, M. Botta,
S. Chemerisov, A. E. Merbach, U. Muller and D. Pubanz, Inorg.
Chem., 1997, 36, 5104.
¨
11 E. M. Haacke, R. W. Brown, M. R. Thompson and R. Venkatesan,
Magnetic Resonance Imaging Physical Principles and Sequence Design,
John Wiley & Sons, Inc., New York, 1999, p. 654.
12 (a) The temperatures at 3 and 7 T differed by 0.8 1C. To examine
the influence of this temperature variation on relaxivity, we
measured cryptate 3 at 11.7 T at temperatures of 19 and 19.8 1C.
The relaxivity values were 6.82 ꢂ 0.01 and 6.72 ꢂ 0.01, respec-
tively; (b) D. J. Averill, J. Garcia, B. N. Siriwardena-Mahanama,
S. M. Vithanarachchi and M. J. Allen, J. Vis. Exp., 2011,
53, e2844.
13 (a) W. C. Floyd III, P. J. Klemm, D. E. Smiles, A. C. Kohlgruber,
V. C. Pierre, J. L. Mynar, J. M. J. Frechet and K. N. Raymond,
´
Notes and references
1 (a) E. Moser, World J. Radiol., 2010, 2, 37; (b) D. Pitt, A. Boster,
W. Pei, E. Wohleb, A. Jasne, C. R. Zachariah, K. Rammohan,
M. V. Knopp and P. Schmalbrock, Arch. Neurol., 2010, 67, 812;
(c) N. Blow, Nature, 2009, 458, 925.
2 L. Helm, Future Med. Chem., 2010, 2, 385.
3 P. Caravan, Chem. Soc. Rev., 2006, 35, 512.
4 J. Costa, R. Ruloff, L. Burai, L. Helm and A. E. Merbach, J. Am.
Chem. Soc., 2005, 127, 5147.
5 (a) J. B. Livramento, C. Weidensteiner, M. I. M. Prata, P. R.
Allegrini, C. F. G. C. Geraldes, L. Helm, R. Kneuer, A. E. Merbach,
J. Am. Chem. Soc., 2011, 133, 2390; (b) A. Kundu, H. Peterlik,
M. Krssak, A. K. Bytzek, I. Pashkunova-Martic, V. B. Arion,
T. H. Helbich and B. K. Keppler, J. Inorg. Biochem., 2011,
105, 250; (c) S. Dumas, V. Jacques, W.-S. Sun, J. S. Troughton,
J. T. Welch, J. M. Chasse, H. Schmitt-Willich and P. Caravan,
Invest. Radiol., 2010, 45, 600; (d) V. C. Pierre, M. Botta, S. Aime
and K. N. Raymond, J. Am. Chem. Soc., 2006, 128, 9272;
(e) K. W.-Y. Chan and W.-T. Wong, Coord. Chem. Rev., 2007,
251, 2428; (f) P. Caravan, N. J. Cloutier, M. T. Greenfield, S. A.
McDermid, S. U. Dunham, J. W. M. Bulte, J. C. Amedio Jr.,
R. J. Looby, R. M. Supkowski, W. D. Horrocks Jr., T. J.
McMurry and R. B. Lauffer, J. Am. Chem. Soc., 2002,
124, 3152; (g) D. E. Reichert, R. D. Hancock and M. J. Welch,
Inorg. Chem., 1996, 35, 7013; (h) F. E. Armitage, D. E. Richardson
and K. C. P. Li, Bioconjugate Chem., 1990, 1, 365.
´
A. C. Santos, P. Schmidt and E. To
2006, 1, 30; (b) J. B. Livramento, L. Helm, A. Sour, C. O’Neil,
´
th, Contrast Media Mol. Imaging,
´
A. E. Merbach and E. To
C. Cannizzo, C. Prestinari, F. Berriere and L. Helm, Inorg. Chem.,
2008, 47, 8357; (d) I. Mamedov, P. Taborsky, P. Lubal, S. Laurent,
´
th, Dalton Trans., 2008, 1195; (c) L. Moriggi,
´
´
c
12860 Chem. Commun., 2011, 47, 12858–12860
This journal is The Royal Society of Chemistry 2011