The Journal of Physical Chemistry A
ARTICLE
enhancement without any spectral shift due to the suppression of
PET process. The extent of enhancement was found to decrease
with an increase in the water content (Figure 9). The optimum
percentage of water for a better Zn2+ sensing was found to be 80:20
(acetonitrile/water, v/v) solvent mixture. Addition of Zn2+ to 1 in
this solvent mixture shows a 4.5-fold fluorescence enhancement as
shown in Figure 10. The observed lower extent of fluorescence
enhancement compared to that in acetonitrile also further supports
the decreased ease of PET in the acetonitrile/water mixtures. The
detection limit was found to be 167 nM in acetonitrile:water (80:20,
v/v) mixture, which is low when compared to the detection limit
(4) (a) Jiang, P.; Guo, Z. Coord. Chem. Rev. 2004, 248, 205–229.
(b) Thompson, R. B. Curr. Opin. Chem. Biol. 2005, 9, 526–532. (c) Lim,
N. C.; Freake, H. C.; Bruckner, C. Chem.—Eur. J. 2005, 11, 38–49.
(d) Zhang, X.-A.; Lovejoy, K. S.; Jasanoff, A.; Lippard, S. J. Proc. Natl.
Acad. Sci. U.S.A. 2007, 104, 10780–10785. (e) Nolan, E. M.; Lippard,
S. J. Acc. Chem. Res. 2009, 42, 193–203. (f) Xu, Z.; Yoon, J.; Spring, D. R.
Chem. Soc. Rev. 2010, 39, 1996–2006. (g) Li, W.; Nie, Z.; He, K.; Xu, X.;
Li, Y.; Huang, Y.; Yao, S. Chem. Commun. 2011, 47, 4412–4414. (h) Liu,
T.; Liu, S. Anal. Chem. 2011, 83, 2775–2785. (i) Huang, C.; Qu, J.; Qi, J.;
Yan, M.; Xu, G. Org. Lett. 2011, 13, 1462–1465.
(5) (a) Burdette, S. C.; Walkup, G. K.; Spingler, B.; Tsien, R. Y.;
Lippard, S. J. J. Am. Chem. Soc. 2001, 123, 7831–7841. (b) Gunnlaugsson,
T.; Lee, T. C.; Parkesh, R. Org. Biomol. Chem. 2003, 1, 3265–3267. (c) Lu,
X.; Zhu, W.; Xie, Y.; Li, X.; Gao, Y.; Li, F.; Tian, H. Chem.—Eur. J. 2010,
16, 8355–8364.
arrived in acetonitrile. The stability constant (Table 2) of 1 Zn2+
3
complex was also found to be lower in acetonitrile/water (80:20,
v/v), which reveals a weak binding interaction between BPA unit
Zn2+ in these solvent mixtures.
(6) (a) Xue, L.; Liu, C.; Jiang, H. Chem. Commun. 2009, 1061–1063.
(b) Hanaoka, K.; Muramatsu, Y.; Urano, Y.; Terai, T.; Nagano, T. Chem.
—Eur. J. 2010, 16, 568–572.
(7) (a) Sclafani, J. A.; Maranto, M. T.; Sisk, T. M.; Van Arman, S. A.
Tetrahedron Lett. 1996, 37, 2193–2196. (b) Kawakami, J.; Niiyama, T.;
Ito, S. Anal. Sci. 2002, 18, 735–736.
IV. CONCLUSION
Anewdualfluorescent ADD derivative (1) bearing BPA receptor
has been synthesized and proved to be a highly selective and
sensitive Zn2+ sensor. Binding of Zn2+ at the receptor moiety leads
to the quenching of PET promoted CT state emission with an
enhancement in the LE state intensity under a ratiometric manner.
This ratiometric change is attributed to the suppression of PET
process during the chelation of Zn2+ in a 1:1 complexation ratio.
Fluorescence lifetime studies clearly prove the involvement PET
process in the fluorescence signaling action. The observation of
ratiometric fluorescence response under PET signaling mechanism
will expand the scope on PET based sensors for the ratiometric
detection. Sensing of Zn2+ is also achieved in a mixed acetonitrile/
water solutions, which shows a single emission with an enhance-
ment in the fluorescence intensity.
(8) (a) Ambrosi, G.; Formica, M.; Fusi, V.; Giorgi, L.; Macedi, E.;
Micheloni, M.; Paoli, P.; Pontellini, R.; Rossi, P. Inorg. Chem. 2010,
49, 9940–9948. (b) Majzoub, A. E.; Cadiou, C.; Dechamps-Olivier, I.;
Tinant, B.; Chuburu, F. Inorg. Chem. 2011, 50, 4029–4038.
(9) (a) Wang, Z.; Palacios, M. A.; Zyryanov, G.; Anzenbacher, P., Jr.
Chem.—Eur. J. 2008, 14, 8540–8546. (b) Han, Z.-X.; Zhang, X.-B.; Li,
Z.; Gong, Y.-J.; Wu, X.-Y.; Jin, Z.; He, C.-M.; Jian, L.-X.; Zhang, J.; Shen,
G.-L.; Yu, R.-Q. Anal. Chem. 2010, 82, 3108–3113.
(10) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T. A.;
Huxley, T. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev.
1997, 97, 1515–1566.
(11) (a) Walkup, G. K.; Burdette, S. C.; Lippard, S. J.; Tsien, R. Y.
J. Am. Chem. Soc. 2000, 122, 5644–5645. (b) Buccella, D.; Horowitz,
J. A.; Lippard, S. J. J. Am. Chem. Soc. 2011, 133, 4101–4114.
(12) (a) Burdette, S. C.; Frederickson, C. J.; Bu, W.; Lippard, S. J.
J. Am. Chem. Soc. 2003, 125, 1778–1787. (b) Kiyose, K.; Kojima, H.;
Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2006, 128, 6548–6549. (c) Jiang,
W.; Fu, Q.; Fan, H.; Wang, W. Chem. Commun. 2008, 259–261. (d) You,
Y.; Tomat, E.; Hwang, K.; Atanasijevic, T.; Nam, W.; Jasanoff, A. P.;
Lippard, S. J. Chem. Commun. 2010, 46, 4139–4141.
’ ASSOCIATED CONTENT
S
Supporting Information. NMR spectra, 3D-contour
b
spectra of 1; fluorescence lifetime decay of ADD dyes, emission
spectra of 1 in the presence of various metal ions and Benesiꢀ
Hildebrand plot for 1 with Zn2+. This material is available free of
(13) Kim, T. W.; Park, J.-H.; Hong, J.-I. J. Chem. Soc., Perkin Trans. 2
2002, 923–927.
(14) (a) Zhang, L.; Clark, R. J.; Zhu, L. Chem.—Eur. J. 2008,
14, 2894–2903. (b) Schwarze, T.; Muller, H.; Dosche, C.; Klamroth,
T.; Mickler, W.; Kelling, A.; Lohmannsroben, H.-G.; Saalfrank, P.;
Holdt, H.-J. Angew. Chem., Int. Ed. 2007, 46, 1671–1674. (c) Xu, Z.;
Kim, G.-H.; Han, S. J.; Jou, M. J.; Lee, C.; Shin, I.; Yoon, J. Tetrahedron
2009, 65, 2307–2312. (d) Schwarze, T.; Mickler, W.; Dosche, C.; Flehr,
R.; Klamroth, T.; Lohmannsroben, H.-G.; Saalfrank, P.; Holdt, H.-J.
Chem.—Eur. J. 2010, 16, 1819–1825. (e) Bozdemir, O. A.; Guliyev, R.;
Buyukcakir, O.; Selcuk, S.; Kolemen, S.; Gulseren, G.; Nalbantoglu, T.;
Boyaci, H.; Akkaya, E. U. J. Am. Chem. Soc. 2010, 132, 8029–8036.
(15) Lakowicz, J. R. Probe Design and Chemical Sensing, Topics in
Fluorescence Spectroscopy; Plenum: New York, 1994; Vol. 4.
(16) (a) Zhou, Z. G.; Yu, M. X.; Yang, H.; Huang, K. W.; Li, F. Y.; Yi,
T.; Huang, C. H. Chem. Commun. 2008, 3387–3389. (b) Roussakis, E.;
Pergantis, S. A.; Katerinopoulos, H. E. Chem. Commun. 2008, 6221–
6223. (c) Wang, H.-H.; Xue, L.; Qian, Y.-Y.; Jiang, H. Org. Lett. 2010,
12, 292–295. (d) Xu, Z.; Yoon, J.; Spring, D. R. Chem. Commun. 2010,
46, 2563–2565. (e) Liu, Z.; Zhang, C.; He, W.; Yang, Z.; Gao, X.; Guo, Z.
Chem. Commun. 2010, 46, 6138–6140. (f) Yu, H.; Xiao, Y.; Guo, H.;
Qian, X. Chem.—Eur. J. 2011, 17, 3179–3191.
’ AUTHOR INFORMATION
Corresponding Author
*Tel.: 091-44-24540962. Fax: 091-44-24546709. E-mail: prm60@
hotmail.com.
’ ACKNOWLEDGMENT
We thank the Department of Science and Technology (DST),
Government of India, for financial support through SERC
scheme Project No. DST/SR/S1/PC-31/2005. Financial sup-
port by DST-IRHPA is also gratefully acknowledged.
’ REFERENCES
(1) Auld, D. S. BioMetals 2001, 14, 271–313.
(2) (a) Bush, A. I. Curr. Opin. Chem. Biol. 2000, 4, 184–191.
(b) Frederickson, C. J.; Koh, J.-Y.; Bush, A. I. Nat. Rev. Neurosci. 2005,
6, 449–462.
(3) Desvergne, J. P., Czarnik, A. W., Eds. Chemosensors for Ion and
Molecule Recognition; Kluwer Academic Publishers: Dordrecht, The
Netherlands, 1997.
(17) (a) Woodroofe, C. C.; Lippard, S. J. J. Am. Chem. Soc. 2003,
125, 11458–11459. (b) Ajayaghosh, A.; Carol, P.; Sreejith, S. J. Am.
Chem. Soc. 2005, 127, 14962–14963. (c) Lim, N. C.; Schuster, J. V.;
Porto, M. C.; Tanudra, M. A.; Yao, L.; Freake, H. C.; Bruckner, C. Inorg.
Chem. 2005, 44, 2018–2030. (d) Xu, Z.; Qian, X.; Cui, J.; Zhang, R.
14298
dx.doi.org/10.1021/jp209061f |J. Phys. Chem. A 2011, 115, 14292–14299