Y. Imazaki et al. / Tetrahedron 67 (2011) 10212e10215
10215
2. Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis;
University Science Books: Sausalito, 2010, pp 877e965.
3. Murahashi, S.-I.; Yamamura, M.; Yanagisawa, K.-I.; Mita, N.; Kondo, K. J. Org.
d
23.9, 33.1, 35.9, 127.1, 129.0, 131.4, 131.5, 134.4, 135.9. HRMS (APCI)
calcd for C11H13S: [MþH]þ, 177.0732. Found m/z 177.0729.
Chem. 1979, 44, 2408e2417.
3.2.8. 1,2-Dihydro-3-(phenylthio)naphthalene (3dm)17. A colorless
4. (a) Oi, S.; Fukita, S.; Hirata, N.; Watanuki, N.; Miyano, S.; Inoue, Y. Org. Lett.
2001, 3, 2579e2581; (b) A recent review of direct arylation, see: Acker-
mann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48,
9792e9826.
5. (a) Mitsudo, T.; Takagi, M.; Zhang, S.-W.; Watanabe, Y. J. Organomet. Chem.
1992, 423, 405e414; (b) Na, Y.; Park, S.; Han, S. B.; Han, H.; Ko, S.; Chang, S.
J. Am. Soc. Chem. 2004, 126, 250e258; (c) Park, S.; Kim, M.; Koo, D. H.;
Chang, S. Adv. Synth. Catal. 2004, 346, 1638e1640; (d) Kawatsura, M.; Ka-
mesaki, K.; Yamamoto, M.; Hayase, S.; Itoh, T. Chem. Lett. 2010, 39,
1050e1051.
6. Shirakawa, E.; Imazaki, Y.; Hayashi, T. Chem. Commun. 2009, 5088e5090.
7. Ruthenium-catalyzed SNAr reaction of aryl fluorides with amines has recently
been reported: (a) Otsuka, M.; Endo, K.; Shibata, T. Chem. Commun. 2010,
336e338; (b) Otsuka, M.; Yokoyama, H.; Endo, K.; Shibata, T. Synlett 2010,
2601e2606.
8. Palladium-catalyzed reaction of alkenyl electrophiles with thiolates, see: (a)
Carpita, A.; Rossi, R.; Scamuzzi, B. Tetrahedron Lett. 1989, 30, 2699e2702; (b)
García Martínez, A.; Osío Barcina, J.; de Fresno Cerezo, A.; Subramanian, L. R.
Synlett 1994, 561e562; (c) Li, G. Y. J. Org. Chem. 2002, 67, 3643e3650; (d)
Eichman, C. C.; Stambuli, J. P. J. Org. Chem. 2009, 74, 4005e4008; (e) Mecha-
nistic studies on palladium-catalyzed reaction of alkenyl halides with a thiol in
the presence of a base, see: Moreau, X.; Campagne, J. M.; Meyer, G.; Jutand, A.
Eur. J. Org. Chem. 2005, 3749e3760; (f) Nickel-catalyzed reaction of alkenyl
electrophiles with thiolates, see: Crisau, H. J.; Chabaud, B.; Labaudiniere, R.;
Christol, H. J. Org. Chem. 1986, 51, 875e878; (g) Yatsumonji, Y.; Okada, O.;
Tsubouchi, A.; Takeda, T. Tetrahedron 2006, 62, 9981e9987; (h) Copper-cata-
lyzed reaction of alkenyl electrophiles with thiolates, see: Bates, C. G.; Saejueng,
P.; Doherty, M. Q.; Venkataraman, D. Org. Lett. 2004, 6, 5005e5008; (i) Manarin,
F.; Roehrs, J. A.; Wilhelm, E. A.; Zeni, G. Eur. J. Org. Chem. 2008, 4460e4465; (j)
Kabir, M. S.; Van Linn, M. L.; Monte, A.; Cook, J. M. Org. Lett. 2008, 10,
3363e3366.
oil. 1H NMR (500 MHz, CDCl3)
d
2.45 (t, J¼8.0 Hz, 2H), 2.87 (t,
J¼8.0 Hz, 2H), 6.49 (s, 1H), 6.95 (d, J¼7.0 Hz, 1H), 7.08e7.16 (m, 3H),
7.28e7.33 (t, J¼7.3 Hz, 1H), 7.36 (t, J¼7.5 Hz, 2H), 7.49 (d, J¼8.0 Hz,
2H). 13C NMR (125 MHz, CDCl3)
d 29.0, 29.1, 125.8, 126.8, 127.10,
127.13, 127.5, 127.7, 129.3, 132.3, 133.6, 134.2, 134.4, 136.2.
3.2.9. 6-Methyl-1-cyclohexenyl phenyl sulfide (3em)8b. A colorless
oil. Contains 2% of regioisomer (3fm). 1H NMR (500 MHz, CDCl3)
d
1.14 (d, J¼7.1 Hz, 3H), 1.50e1.83 (m, 4H), 2.09e2.23 (m, 2H),
2.26e2.30 (m, 1H), 6.06 (t, J¼3.8 Hz, 1H), 7.19 (t, J¼7.2 Hz, 1H), 7.29
(t, J¼7.4 Hz, 2H), 7.33 (d, J¼7.2 Hz, 2H). 13C NMR (125 MHz, CDCl3)
d
18.5, 20.2, 27.3, 31.4, 32.9, 126.2, 129.0, 130.1, 134.0, 136.2, 137.1.
3.2.10. 2-Methyl-1-cyclohexenyl phenyl sulfide (3fm)8b. A colorless
oil. Contains 7% of regioisomer (3em). 1H NMR (500 MHz, CDCl3)
d
1.60e1.71 (m, 4H), 1.96 (s, 3H), 2.12e2.24 (m, 4H), 7.13 (t, J¼7.2 Hz,
1H), 7.20 (d, J¼8.3 Hz, 2H), 7.25 (t, J¼7.6 Hz, 2H). 13C NMR (125 MHz,
CDCl3)d21.9, 23.0, 24.4, 32.1, 33.1,123.3,125.3,128.2,128.9,137.0,141.9.
3.2.11. 1-Octen-2-yl phenyl sulfide (3gm). A colorless oil. Contains
9% of 2-octen-2-yl phenyl sulfides. 1H NMR (500 MHz, CDCl3)
0.89
d
(t, J¼7.0 Hz, 3H), 1.20e1.34 (m, 6H), 1.50e1.59 (m, 2H), 2.22 (t,
J¼7.6 Hz, 2H), 4.87 (s, 1H), 5.14 (s, 1H), 7.28 (t, J¼7.3 Hz, 1H), 7.33 (t,
9. (a) Trost, B. M.; Lavoie, A. C. J. Am. Chem. Soc. 1983, 105, 5075e5090; (b) De
Lucchi, O.; Pasquato, L. Tetrahedron 1988, 44, 6755e6794; (c) Mizuno, H.;
Domon, K.; Masuya, K.; Tanino, K.; Kuwajima, I. J. Org. Chem. 1999, 64,
2648e2656.
10. (a) Marcantoni, E.; Massaccesi, M.; Petrini, M. J. Org. Chem. 2000, 65,
4553e4559; (b) Johannesson, P.; Lindeberg, G.; Johansson, A.; Nikiforovich, G.
J¼7.2 Hz, 2H), 7.44 (d, J¼8.2 Hz, 2H).13C NMR (125 MHz, CDCl3)
d 14.2,
22.7, 28.5, 28.7, 31.7, 36.7,112.6,127.8,129.2,133.4,133.5,146.3. HRMS
(APCI) calcd for C14H21S: [MþH]þ, 221.1358. Found m/z 221.1352.
3.2.12. 1-Nonen-1-yl phenyl sulfide (3hm). A colorless oil. E/Z¼87/
13. The italicized peaks could not be assigned to each isomer. The
peaks in 13C NMR were characterized by a comparison of 13C NMR
spectra between a mixture of stereoisomers in 87/13 (E/Z) ratio and
that in 52/48 ratio, which was obtained through isomerization on
ꢀ
ꢁ
V.; Gogoll, A.; Synnergren, B.; Le Greves, M.; Nyberg, F.; Karlen, A.; Hallberg, A. J.
Med. Chem. 2002, 45, 1767e1777; (c) Sader, H. S.; Johnson, D. M.; Jones, R. N.
Antimicrob. Agents Chemother. 2004, 48, 53e62.
11. The most effective catalyst system (3 mol % of Ru(acac)3, 3 mol % of Me4-phen,
120 ꢀC, 24 h) for the transformation of alkenyl triflates to alkenyl halides was
first employed.
12. Transition metal-catalyzed reaction of aryl electrophiles with PhSSPh and zinc,
see: (a) Taniguchi, N. J. Org. Chem. 2004, 69, 6904e6906; (b) Fukuzawa, S.;
Tanihara, D.; Kikuchi, S. Synlett 2006, 2145e2147.
13. Ruthenium(III) complexes are known to be reduced by Zn to ruthenium(0)
complexes. (a) Pertici, P.; Vitulli, G.; Porri, L. J. Chem. Soc., Chem. Commun. 1975,
846; (b) Hill, A. F.; Neumann, H.; Wagler, J. Organometallics 2010, 29,
1026e1031; (c) For reduction of [RuCl2(p-cymene)]2 by Zn to a ruthenium(0)
complex, see: Bates, R. S.; Wright, A. H. J. Chem. Soc., Chem. Commun. 1990,
1129e1131. The reaction of 1a with NaSPh (2m) shown in entry 1 proceeded
even in the absence of Zn, probably because NaSPh, which should be more
nucleophilic than Zn(SPh)2, can reduce Ru(acac)3 to a catalytically active Ru(0)
complex.
silica gel. 1H NMR (500 MHz, CDCl3)
d
0.90 (t, J¼6.9 Hz, 3H),
1.24e1.37 (m, 8H), 1.38e1.48 (m, 2H), 2.17/2.26 (q, J¼7.0/7.4 Hz, 2H),
6.00/5.83 (dt, J¼15.0, 7.0/9.3, 7.4 Hz, 1H), 6.14/6.19 (d, J¼15.0/9.3 Hz,
1H), 7.18 (t, J¼6.9 Hz, 1H), 7.26e7.36 (m, 4H). 13C NMR (125 MHz,
CDCl3) E-3hm:
d 14.2, 22.8, 29.16, 29.21, 29.24, 31.97, 33.2, 120.8,
126.1, 128.5, 129.0, 136.9, 138.0. Z-3hm:
d 14.2, 22.8, 29.19, 29.28,
29.34, 31.99, 33.2, 122.8, 126.2, 128.9, 129.1, 133.9, 136.7. HRMS
(APCI) calcd for C15H23S: [MþH]þ, 235.1515. Found m/z 235.1519.
3.2.13. 1-Octen-1-yl phenyl sulfide (3im)16b. A colorless oil. E/Z¼92/
14. (a) Ritter, K. Synthesis 1993, 735e762; (b) Baraznenok, I. L.; Nenajdenko, V. G.;
Balenkova, E. S. Tetrahedron 2000, 56, 3077e3119.
8. The italicized peaks could not be assigned to each isomer. 1H
15. Treatment of 1-octen-2-yl triflate under the reaction conditions but in the
absence of a ruthenium catalyst gave an isomeric mixture of octenyl phenyl
sulfides. The thiolation is likely to proceed via addition of thiolates to alkynes
generated by elimination reaction because 1- and 2-octynes were observed at
the early stage of the reaction.
NMR (500 MHz, CDCl3)
d
0.90 (t, J¼6.8 Hz, 3H), 1.24e1.33 (m, 6H),
1.34e1.47 (m, 2H), 2.17/2.25 (q, J¼7.2/6.6 Hz, 2H), 6.00/5.83 (dt,
J¼15.0, 7.0/9.2, 7.3 Hz, 1H), 6.14/6.19 (d, J¼15.0/9.2 Hz, 1H), 7.18 (t,
J¼6.9 Hz, 1H), 7.26e7.36 (m, 4H).
16. For synthesis of alkenyl iodide 1g: (a) Kamiya, N.; Chikami, Y.; Ishii, Y.
Synlett 1990, 675e676 (E)-1i: (b) Ren, H.; Krasovskiy, A.; Knochel, P. Org.
Lett. 2004, 6, 4215e4217 (Z)-1i: (c) Brown, H. C.; Hamaoka, T.; Ravindran, N.;
Subrahmanyam, C.; Somayaji, V.; Bhat, N. G. J. Org. Chem. 1989, 54,
6075e6079.
References and notes
€
17. Muller, P.; Bernardinelli, G.; Godoy-Nguyen Thi, H. C. Helv. Chim. Acta 1989, 72,
1. Ruthenium in Organic Synthesis; Murahashi, S.-I., Ed.; Wiley-VCH: Weinheim,
1627e1638.
2004.