A. C. Meister, P. F. Sauter, S. Bräse
FULL PAPER
(dd, 2J = 16.9 Hz, 3J = 14.4 Hz, 1 H, CH2), 2.55 (ddd, 2J = 16.9 Hz,
[4]
[5]
H. Zhang, J. Xue, P. Wu, L. Xu, H. Xie, X. Wie, J. Nat. Prod.
2009, 72, 265–269.
4
3J = 5.4 Hz, J = 1.5 Hz, 1 H, CH2), 2.73–2.83 (m, 1 H, CHCH3),
3.17 (dd, 3J = 10.1 Hz, 3J = 3.8 Hz, 1 H, CH), 3.32 (ddd, 3J =
a) W. Zhang, K. Krohn, Zia-Ullah, U. Flörke, G. Pescitelli, L.
Di Bari, S. Antus, T. Kurtán, J. Rheinheimer, S. Draeger, B.
Schulz, Chem. Eur. J. 2008, 14, 4913–4923; b) for the first total
synthesis of blennolide B, see: T. Qin, R. P. Johnson, J. A.
Porco Jr., J. Am. Chem. Soc. 2011, 133, 1714–1717; c) for the
first total synthesis of blennolide A, see: L. F. Tietze, L. Ma,
J. R. Reiner, S. Jackenkroll, S. Heidemann, Chem. Eur. J. 2013,
19, 8610–8614.
3
4
10.0 Hz, J = 3.9 Hz, J = 1.3 Hz, 1 H, CH), 3.40 (mc, 1 H, CH),
3.50 (mc, 1 H, CH), 6.04 (dd, 3J = 5.6 Hz, 3J = 2.8 Hz, 1 H, =CH),
6.25 (dd, 3J = 5.6 Hz, 3J = 2.9 Hz, 1 H, =CH) ppm. 13C NMR
(100 MHz, CDCl3): δ = 13.75 (+, CH3), 41.49 (+, CHCH3), 45.45
(+, CH), 45.67 (–, CH2), 48.47 (+, CH), 48.56 (–, CH2), 52.20 (+,
CH), 52.55 (+, CH), 135.07 (+, =CH), 138.26 (+, =CH), 210.11
(Cq, CO), 210.30 (Cq, CO) ppm. IR [attenuated total reflectance
[6]
[7]
a) K.-S. Masters, S. Bräse, Chem. Rev. 2012, 112, 3717–3776;
b) S. Bräse, A. Encinas, J. Keck, C. F. Nising, Chem. Rev. 2009,
109, 3903–3990.
(ATR) platinium, mixture of diastereomers]: ν = 2972 (vw), 2946
˜
(vw), 1695 (w), 1458 (vw), 1412 (vw), 1373 (vw), 1339 (vw), 1299
(vw), 1261 (vw), 1244 (vw), 1223 (vw), 1181 (vw), 1157 (vw), 1104
(vw), 1057 (vw), 991 (vw), 910 (vw), 860 (vw), 781 (vw), 751 (vw),
729 (vw), 613 (vw), 576 (vw), 501 (vw) cm–1. MS (EI, 70 eV, mix-
ture of diastereomers): m/z (%) = 190 (44) [M]+, 91 (19) [C7H7]+,
66 (100) [C5H6]+. HRMS (EI, mixture of diastereomers): calcd. for
C12H14O2 190.0994; found 190.0995.
a) B. Franck, E.-M. Gottschalk, U. Ohnsorge, F. Hüper, Chem.
Ber. 1966, 99, 3842–3862; b) P. S. Steyn, Tetrahedron 1970, 26,
51–57; c) C. C. Howard, R. A. W. Johnstone, I. D. Entwistle, J.
Chem. Soc., Chem. Commun. 1973, 464; d) I. Kurobane, L. C.
Vining, G. McInnes, Tetrahedron Lett. 1978, 19, 4633–4636.
B. Franck, G. Baumann, Chem. Ber. 1966, 99, 3863–3874.
a) M. Isaka, A. Jaturapat, K. Rukseree, K. Danwisetkanjana,
M. Tanticharoen, Y. Thebtaranonth, J. Nat. Prod. 2001, 64,
1015–1018; b) B. Elsässer, K. Krohn, U. Flörke, N. Root, H.-
J. Aust, S. Draeger, B. Schulz, S. Antus, T. Kurtán, Eur. J. Org.
Chem. 2005, 4563–4570.
J. Lin, S. Liu, B. Sun, S. Niu, E. Li, X. Liu, Y. Che, J. Nat.
Prod. 2010, 73, 905–910.
A. C. Meister, M. Nieger, S. Bräse, Eur. J. Org. Chem. 2012,
5373–5380.
U. K. Ohnemüller (née Schmid), C. F. Nising, M. Nieger, S.
Bräse, Eur. J. Org. Chem. 2006, 1535–1546.
[8]
[9]
Diels–Alder Adduct (R)-11: To a solution of 1,4-adduct (R)-8
(50.0 mg, 295 μmol, 1.00 equiv.) in acetone (2 mL) were added
water (2 drops) and then Amberlyst 15® (10 mg). The mixture was
stirred at room temp. for 10 min and then diluted with of Et2O
(10 mL). The resulting mixture was dried with sodium sulfate, and
then the solvent was removed under reduced pressure at room
temp. to give (R)-10 (14.6 mg, 118 μmol, quantitative yield) as a
yellow oil. The product was dissolved in methanol (5 mL), and the
solution was cooled to 0 °C. Freshly distilled cyclopentadiene
(25 mg, 378 μmol, 1.28 equiv.) was added. The mixture was stirred
at room temp. for 18 h, and then the solvent was removed under
reduced pressure. The residue was purified by column chromatog-
raphy (cyclohexane/ethyl acetate, 10:1). One fraction of pure endo-
(S)-11 (5.7 mg, 30.0 μmol, 10%) and a mixed fraction of endo- and
exo-(S)-11 (12.0 mg, 63.1 μmol, 21%; endo/exo, 1.0:1.6) were ob-
tained. The analytical data of endo-(R)-11 corresponds with endo-
(S)-11, and the data for exo-(R)-11 corresponds with exo-(S)-11.
Therefore, they are not listed.
[10]
[11]
[12]
[13]
[14]
E. Piers, S. Caillé, G. Chen, Org. Lett. 2000, 2, 2483–2486.
M. G. Edwards, M. N. Kenworthy, R. R. A. Kitson, M. S.
Scott, R. J. K. Taylor, Angew. Chem. 2008, 120, 1961; Angew.
Chem. Int. Ed. 2008, 47, 1935–1937.
[15] a) M. C. Carreño, M. Ribagorda, Á. Somoza, A. Urbano, An-
gew. Chem. 2002, 114, 2879; Angew. Chem. Int. Ed. 2002, 41,
2755–2757; b) M. C. Carreño, M. Pérez-Gonzalés, M. Riba-
gorda, Á. Somoza, A. Urbano, Chem. Commun. 2002, 3052–
3053; c) M. C. Carreño, M. Ribagorda, A. Somoza, A. Ur-
bano, Chem. Eur. J. 2007, 13, 879–890.
[16] a) M. Shan, G. A. O’Doherty, Org. Lett. 2008, 10, 3381–3384;
b) M. Shan, E. U. Sharif, G. A. O’Doherty, Angew. Chem.
2010, 122, 9682; Angew. Chem. Int. Ed. 2010, 49, 9492–9495.
[17] a) R. Imbos, M. H. G. Brilman, M. Pineschi, B. L. Feringa,
Org. Lett. 1999, 1, 623–625; b) see also: L. C. Konkol, F. Guo,
A. A. Sarjeant, R. J. Thomson, Angew. Chem. 2011, 123,
10105; Angew. Chem. Int. Ed. 2011, 50, 9931–9934.
Supporting Information (see footnote on the first page of this arti-
cle): Further experimental and analytical data as well as 1H and
13C NMR spectra are presented.
Acknowledgments
[18] For the synthesis from a diketal, see: D. R. Henton, J. An-
derson, M. J. Manning, J. S. Swenton, J. Org. Chem. 1980, 45,
3422–3433; for the synthesis from a hydroquinone, see: A.
Pelter, S. Elgendy, Tetrahedron Lett. 1988, 29, 677–680.
[19] G. M. Coppola, Synthesis 1984, 1021–1023.
[20] a) D. D. Chapman, W. J. Musliner, J. W. Gates Jr., J. Chem.
Soc. C 1969, 124–128; b) D. D. Chapman, J. W. Gates Jr., W. J.
Musliner, French Patent FR 2004838, 1969; c) M. Sainsbury,
in: Science of Synthesis 2008, vol. 32, p. 299–334.
The authors acknowledge the Fonds der Chemischen Industrie and
the Deutsche Forschungsgemeinschaft (DFG) (BR 1750-12-1) for
the financial support.
[1] S. Qin, H. Hussain, B. Schulz, S. Draeger, K. Krohn, Helv.
Chim. Acta 2010, 93, 169–174.
[2] a) G. Bach, S. Breiding-Mack, S. Grabley, P. Hammann, K.
Huetter, R. Thiericke, H. Uhr, J. Wink, A. Zeeck, Liebigs Ann.
Chem. 1993, 241–250; b) for the first total synthesis of gabos- [21] a) E. W. Garbisch Jr., J. Am. Chem. Soc. 1965, 87, 4971–4972;
ine B, see: T. Shinada, T. Fuji, Y. Ohtani, Y. Yoshida, Y.
Ohfune, Synlett 2002, 1341–1343; c) for a review about gabos-
ines, see: P. Bayón, M. Figueredo, Chem. Rev. 2013, 113, 4680–
4707.
b) S. Jarupinthusophon, U. Thong-In, W. Chavasiri, J. Mol.
Catal. A: Chem. 2007, 270, 289–294.
[22] a) D. B. G. Williams, K. Blann, C. W. Holzapfel, J. Chem. Soc.
Perkin Trans. 1 2001, 219–220; b) M. Ghandi, M. Shahidzadeh,
J. Organomet. Chem. 2006, 691, 4918–4925.
[23] The synthesis was adapted from ref.[17]
[24] For its synthesis see ref.[18]
[3] a) M.-S. Kuo, D. A. Yurek, S. A. Mizsak, V. P. Marshall, W. F.
Liggett, J. I. Cialdella, A. L. Laborde, J. A. Shelly, S. E. Trues-
dell, J. Antibiot. 1995, 48, 888–890; b) for the first total Synthe-
sis see: M. C. Carreño, E. Merino, M. Ribagorda, Á. Somoza,
A. Urbano, Org. Lett. 2005, 7, 1419–1422; c) M. C. Carreño,
E. Merino, M. Ribagorda, A. Somoza, A. Urbano, Chem. Eur.
J. 2007, 13, 1064–1077.
[25] J. A. Dale, D. L. Dull, H. S. Mosher, J. Org. Chem. 1969, 34,
2543–2549.
Received: May 22, 2013
Published Online: September 13, 2013
7116
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 7110–7116