allylic oxidative amination.10 Importantly, the Brønsted
base modulated regioselective palladium-catalyzed inter-
molecular aerobic aza-Wacker-type reaction has been
developed by Stahl and co-workers.11 However, the anti-
Markovnikov amination is limited in substrate scope in
their reported work. Herein, we report a regioselective
palladium-catalyzed intramolecular aerobic aza-Wacker
cyclization. With this method, isoindolin-1-one and
isoquinolin-1(2H)-one derivatives were prepared in differ-
ent conditions and high yields (Scheme 1).
toluene and THF for the reaction yielding 2a due to the
poor solubility of the correponding palladium complex but
beneficial to the catalysis in MeOH, resulting in an 85%
yield of product (entries 3, 5 vs 7). An opposite behavior
was observed with the quinoline as a monodentate ligand
(entries 2, 4 vs 6). To our surprise, the six-membered ring
3a was afforded as the favored product in the absence of
ligand in MeOH (entry 8). The yield of 3a could be further
enhanced by adding CuCl2 as the cocatalyst and changing
Pd(OAc)2 to (MeCN)2PdCl2 (entries 9, 10). The 3a form-
ing reactions in different solvents gave lower or similar
yields (entries 11, 12). When 20 mol % triethylamine was
added to the system described in entry 10, an excellent yield
of 3a was achieved (entry 13). In addition, CuCl2 could
catalyze neither of the reactions (entry 14).
Scheme 1. Switchable Regioselective Palladium-Catalyzed
Intramolecular Aerobic Aza-Wacker Cyclization
To identify the variables for regiocontrol, we further
screened several reaction conditions.14 A catalytic amount
of PhCO2H had no significant effect on the yield of 3a but
could decrease the yield of 2a dramatically (entries 15, 16).
This means the excess Phen in condition A may also
function as a Brønsted base.11 We have also studied the
effect of the chloride ion (entries 7ꢀ10, 17ꢀ20). Unfortu-
nately, maybe due to the poor solubility, no reaction
happened with or without added CuCl2 when (MeCN)2-
PdCl2 and Phen in situ formed the catalyst in MeOH
(entries 17, 18). Importantly, the cocatalysts Cu(OAc)2
and Cu(OTf)2 could alsoincreasethe yield of 3a(entries 19,
20). These results show that the chloride ion can improve
the activity of the catalyst toward the six-membered ring
product, but it is not the most significant variable for
regiocontrol.15 Similar ligands, Bpy and Phen, gave simi-
lar yields of 2a (entries 7, 21). Interestingly, when the more
sterically hindered ligand NC was used, the regioselectivity
Our initial goal was to develop an enantioselective
aza-Wacker-type cyclization reaction toward the total syn-
thesis of 3-monosubstituted chiral isoindolinone natural
products.12 Although no satisfactory enantioselectivity
was obtained, we discovered that different reaction condi-
tions could provide different products, isoindolin-1-one
derivative 2a or isoquinolin-1(2H)-one derivative 3a
(Table 1).13 We screened the conditions to optimize the
yields of 2a and 3a. The well studied system, pyridine/
Pd(OAc)2/toluene,6bꢀe gave the best yield (68%) of 2a in
toluene under aerobic conditions (Table 1, entries 1ꢀ3).
The bidentate ligand, Phen, was toxic to Pd(OAc)2 in
(6) (a) Larock, R. C.; Hightower, T. R.; Hasvold, L. A.; Peterson,
K. P. J. Org. Chem. 1996, 61, 3584. (b) Fix, S. R.; Brice, J. L.; Stahl, S. S.
Angew. Chem., Int. Ed. 2002, 41, 164. (c) Trend, R. M.; Ramtohul, Y. K.;
Ferreira, E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2003, 42, 2892. (d)
Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005,
127, 17778. (e) Yip, K.-T.; Yang, M.; Law, K.-L.; Zhu, N.-Y; Yang, D.
J. Am. Chem. Soc. 2006, 128, 3130. (f) Rogers, M. M.; Wendlandt, J. E.;
Guzei, I. A.; Stahl, S. S. Org. Lett. 2006, 8, 2257. (g) He, W.; Yip, K.-T;
Zhu, N.-Y; Yang, D. Org. Lett. 2009, 11, 1911. (h) He, W.; Yip, K.-T.;
Zhu, N.-Y; Yang, D. Org. Lett. 2009, 11, 5626. (i) Scarborough, C. C.;
Bergant, A.; Sazama, G. T.; Guzei, I. A.; Spencer, L. C.; Stahl, S. S.
Tetrahedron 2009, 65, 5084. (g) McDonald, R. I.; Stahl, S. S. Angew.
Chem., Int. Ed. 2010, 49, 5529. (k) Jiang, F.; Wu, Z.; Zhang, W.
Tetrahedron Lett. 2010, 51, 5124. (l) McDonald, R. I.; White, P. B.;
Weinstein, A. B.; Tam, C. P.; Stahl, S. S. Org. Lett. 2011, 13, 2830. (m)
Ye, X.; Liu, G.; Popp, B. V.; Stahl, S. S. J. Org. Chem. 2011, 76, 1031. (n)
Yip, K.-T.; Yang, D. Chem.;Asian J. 2011, 6, 2166.
(12) For enantioselective Wacker-type cyclization and related reac-
tions, see: (a) Uozumi, Y.; Kato, K.; Hayashi, T. J. Am. Chem. Soc. 1997,
119, 5063. (b) Uozumi, Y.; Kyota, H.; Kato, K.; Ogasawara, M;
Hayashi, T. J. Org. Chem. 1999, 64, 1620. (c) Arai, M. A.; Kuraishi,
M.; Arai, T.; Sasai, H. J. Am. Chem. Soc. 2001, 123, 2907. (d) Wang, F.;
Zhang, Y. J.; Wei, H.; Zhang, J.; Zhang, W. Tetrahedron Lett. 2007, 48,
4083. (e) Wang, F.; Zhang, Y. J.; Yang, G.; Zhang, W. Tetrahedron Lett.
2007, 48, 4179. (f) Zhang, Y. J.; Wang, F.; Zhang, W. J. Org. Chem. 2007,
72, 9208. (g) Wang, F.; Yang, G.; Zhang, Y. J.; Zhang, W. Tetrahedron
2008, 64, 9413. (h) Tsujihara, T.; Shinohara, T.; Takenaka, K.; Takizawa,
S.; Onitsuka, K.; Hatanaka, M.; Sasai, H. J. Org. Chem. 2009, 74, 9274.
(i) Takenaka, K.; Mohanta, S. C.;Patil, M. L.;Rao, C. V. L;Takizawa, S.;
Suzuki, T.; Sasai, H. Org. Lett. 2010, 12, 3480. Also see ref 6c, 6d, 6k, and
6l.
(13) For selected recent papers on the synthesis of isoindolin-1-one
derivatives, see: (a) Serna, S.; Tellitu, I.; Dominguez, E.; Moreno, I.;
SanMartin, R. Tetrahedron Lett. 2003, 44, 3483. (b) Khan, M. W.; Reza,
A. F. G. M. Tetrahedron 2005, 61, 11204. (c) Cao, H.; Mcnamee, L.;
Alper, H. Org. Lett. 2008, 10, 5281. (d) Wan, J.; Zhou, J.; Mao, H.; Pan,
Y.-J.; Wu, A.-X. Tetrahedron 2008, 64, 11115. (e) Takaya, J.; Sangu, K.;
Iwasawa, N. Angew. Chem., Int. Ed. 2009, 48, 7090. (f) Wang, F.; Song,
G.-Y.; Li, X.-W. Org. Lett. 2010, 12, 5430. (g) Zhu, C.; Falck, J. R. Org.
Lett. 2011, 13, 1214. (h) Shacklady-McAtee, D. M.; Dasgupta, S.;
Watson, M. P. Org. Lett. 2011, 13, 3490. (i) Wrigglesworth, J. W.;
Cox, B.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Org. Lett. 2011, 13,
(7) (a) Wucher, P.; Caporaso, L.; Roesle, P.; Ragone, F.; Cavallo, L.;
€
Mecking, S.; Gottker-Schnetmann, I. Proc. Natl. Acad. Sci. U.S.A.
2011, 108, 8955. (b) Ruan, J.; Xiao, J. Acc. Chem. Res. 2011, 44, 614.
(8) (a) Kasahara, A.; Izumi, T.; Sato, K.; Maemura, K.; Hayasaka, T.
Bull. Chem. Soc. Jpn. 1977, 50, 1899. (b) Annby, U.; Stenkula, M.;
Andersson, C. M. Tetrahedron Lett. 1993, 34, 8545. (c) Chen, M. S.;
Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005,
127, 6970.
(9) (a) Hegedus, L. S. J. Mol. Catal. 1983, 19, 201. (b) Harrington,
P. J.; Hegedus, L. S. J. Org. Chem. 1984, 49, 2657. (c) Kasahara, A.;
Izumi, T.; Murakami, S.; Miyamoto, K.; Hino, T. J. Heterocycl. Chem.
1989, 26, 1405. (d) Beccalli, E. M.; Broggini, G.; Paladino, G.; Penoni,
A.; Zoni, C. J. Org. Chem. 2004, 69, 5627. (e) Rogers, M. M.; Wendlandt,
J. E.; Guzei, I. A.; Stahl, S. S. Org. Lett. 2006, 8, 2257.
€
5326. (j) Augner, D.; Gerbino, D. C.; Slavov, N.; Neudorfl, J.-M.;
Schmalz, H.-G. Org. Lett. 2011, 13, 5374. (k) Newman, S. J.; Howell,
J. K.; Nicolaus, N.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 14916.
For selected recent papers on the synthesis of isoquinolin-1(2H)-one
derivatives, see:(l) He, Z.; Yudin, A. K. Org. Lett. 2006, 8, 5829. (m)
Kajita, Y.; Matsubara, S.; Kurahashi, T. J. Am. Chem. Soc. 2008, 130,
6058. (n) Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem., Int.
Ed. 2011, 50, 6379. (o) Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.;
Chatani, N. J. Am. Chem. Soc. 2011, 133, 14952.
(10) Wu, L.; Qiu, S.; Liu, G. Org. Lett. 2009, 11, 2707.
(11) (a) Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem.
Soc. 2003, 125, 12996. (b) Timokhin, V. I.; Stahl, S. S. J. Am. Chem. Soc.
2005, 127, 17888.
(14) Thanks for the reviewers’ gentle suggestions.
Org. Lett., Vol. 14, No. 1, 2012
269