A.Y. Hong et al. / Tetrahedron 67 (2011) 10234e10248
10247
4.5. Procedures for synthesis of cycloheptenone derivatives
Supplementary data
43
Additional general information, procedures for the synthesis of
new compounds and ligands, procedures for general methods
AeI, and reaction screening protocols for asymmetric alkylation
and ring contraction; 1H NMR, 13C NMR, and IR spectra for com-
pounds L3, L4, 1n, 6l, 6n, 7l, 7n, 10n, 11r, 15, 17, 21, 22, 23, 24, 28,
42; HPLC traces for vinylogous esters 7l and 7n. Supplementary
data related to this article can be found online at doi:10.1016/
4.5.1. General method I: ring closing metathesis.
N
N
Cl
Ru
Cl
O
33b
Grubbs Hoveyda
2nd Generation (5 mol %)
PhH, 50 °C
O
O
References and notes
3w
43w
99% yield
1. For a review discussing our strategy of using natural product structures to drive
the development of enantioselective catalysis, see: Mohr, J. T.; Krout, M. R.;
Stoltz, B. M. Nature 2008, 455, 323e332.
A 100 mL round-bottom flask equipped with a magnetic stir bar,
fitted with a water condenser, and connected to a Schlenk manifold
(through the condenser) was flame-dried three times, backfilling
with argon after each drying cycle. Once cool, the flask was loaded
with neat cycloheptenone 3w (50.0 mg, 0.22 mmol, 1.00 equiv) and
backfilled with argon twice. Benzene (1 h argon sparge before
use, 43 mL, 0.005 M) was added to the flask, followed by
GrubbseHoveyda second generation catalyst (6.7 mg, 0.011 mmol,
5 mol %). The solution color turned pale green with addition of
catalyst. The flask was lowered into a preheated oil bath (50 ꢀC).
The reaction was removed from the oil bath after 30 min, cooled to
room temperature (23 ꢀC), and quenched with ethyl vinyl ether
(1 mL). The reaction was filtered through a short silica gel plug
rinsing with Et2O and concentrated under reduced pressure. The
crude oil was purified twice by flash chromatography (SiO2, both
columns 2ꢄ28 cm, 100% hexanes/2%/5% EtOAc in hexanes) to
afford cycloheptenone 43w (43.5 mg, 0.21 mmol, 99% yield) as
a yellow oil; Rf¼0.56 (30% EtOAc in hexanes); 1H NMR (500 MHz,
2. For examples of asymmetric palladium-catalyzed reactions of cyclic ketone
enolates, see: (a) Ketone alkylation: Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc.
2004, 126, 15044e15045; Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M.
Angew. Chem., Int. Ed. 2005, 44, 6924e6927; (b) Behenna, D. C.; Mohr, J. T.;
ꢀ
Sherden, N. H.; Marinescu, S. C.; Harned, A. M.; Tani, K.; Seto, M.; Ma, S.; Novak,
Z.; Krout, M. R.; McFadden, R. M.; Roizen, J. L.; Enquist, J. A.; White, D. E.;
Levine, S. R.; Petrova, K. V.; Iwashita, A.; Virgil, S. C.; Stoltz, B. M. Chem. Eur. J., in
T.; Nishimata, T.; Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2006, 128,
11348e11349; Marinescu, S. C.; Nishimata, T.; Mohr, J. T.; Stoltz, B. M. Org. Lett.
2008, 10, 1039e1042; (d) Conjugate addition/enolate alkylation cascade:
Streuff, J.; White, D. E.; Virgil, S. C.; Stoltz, B. M. Nature Chem. 2010, 2, 192e196.
3. For examples of the asymmetric palladium-catalyzed alkylation of heterocyclic
ketone enolates, see: Seto, M.; Roizen, J. L.; Stoltz, B. M. Angew. Chem., Int. Ed.
2008, 47, 6873e6876.
4. For studies on the computational and experimental studies on the mechanism
of palladium-catalyzed asymmetric alkylation using the PHOX ligand scaffold,
see: (a) Keith, J. A.; Behenna, D. C.; Mohr, J. T.; Ma, S.; Marinescu, S. C.; Oxgaard,
J.; Stoltz, B. M.; Goddard, W. A. J. Am. Chem. Soc. 2007, 129, 11876e11877; (b)
Sherden, N. H.; Behenna, D. C.; Virgil, S. C.; Stoltz, B. M. Angew. Chem., Int. Ed.
2009, 48, 6840e6843.
5. For examples of the asymmetric alkylation of cyclic ketones and vinylogous
esters or thioesters in the context of natural product synthesis, see: (a)
McFadden, R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2006, 128, 7738e7739; (b)
White, D. E.; Stewart, I. C.; Grubbs, R. H.; Stoltz, B. M. J. Am. Chem. Soc. 2008,
130, 810e811; (c) Levine, S. R.; Krout, M. R.; Stoltz, B. M. Org. Lett. 2009, 11,
289e292; (d) Petrova, K. V.; Mohr, J. T.; Stoltz, B. M. Org. Lett. 2009, 11,
293e295; (e) White, D. E.; Stewart, I. C.; Seashore-Ludlow, B. A.; Grubbs, R.
H.; Stoltz, B. M. Tetrahedron 2010, 66, 4668e4686; (f) Day, J. J.; McFadden, R.
M.; Virgil, S. C.; Kolding, H.; Alleva, J. L.; Stoltz, B. M. Angew. Chem., Int. Ed.
2011, 50, 6814e6818.
CDCl3)
d
5.77e5.70 (m, 1H), 5.65 (tdt, J¼10.4, 6.4, 1.3 Hz, 1H),
2.68e2.55 (m, 2H), 2.54e2.44 (m, 1H), 2.30e2.24 (m, 2H),
2.24e2.15 (m, 1H), 2.13e2.04 (m, 1H), 1.94e1.69 (m, 7H), 1.52e1.41
(m, 1H), 1.22 (s, 3H); 13C NMR (125 MHz, CDCl3)
d 204.2, 165.6,
132.2,131.9,128.5, 49.0, 44.2, 39.8, 39.5, 35.5, 31.1, 27.0, 26.5,17.8; IR
(neat film NaCl) 3018, 2928, 2859, 1645, 1608, 1468, 1448, 1411,
1380, 1343, 1327, 1279, 1253, 1214, 1178, 1131, 1102, 1088, 1051, 1015,
987, 965, 937, 920, 899, 880, 845, 796, 777, 747 cmꢂ1; HRMS (MM:
ESIeAPCIþ) calcd for C14H21O [MþH]þ: 205.1587; found 205.1587;
6. For our initial communication on the addition of organometallic reagents to
chiral vinylogous esters to form g-quaternary cycloheptenones, see: Bennett, N.
B.; Hong, A. Y.; Harned, A. M.; Stoltz, B. M. Org. Biomol. Chem., in press, doi:10.
7. For our initial communication on the palladium catalyzed asymmetric alkyl-
½
a 2D5:0
ꢃ
ꢂ141.99 (c 1.01, CHCl3, 88% ee).
ation and ring contraction studies in the synthesis of g-quaternary acylcyclo-
pentenes, see: Hong, A. Y.; Krout, M. R.; Jensen, T.; Bennett, N. B.; Harned, A. M.;
Stoltz, B. M. Angew. Chem., Int. Ed. 2011, 50, 2756e2760.
Acknowledgements
This publication is based on work supported by Award No. KUS-
11-006-02, made by King Abdullah University of Science and
Technology (KAUST). The authors wish to thank NIHeNIGMS
(R01M080269-01), Amgen, Abbott, Boehringer Ingelheim, and
Caltech for financial support. A.Y.H. thanks Roche for an Excellence
in Chemistry Award and Abbott for an Abbott Scholars Symposium
Award. M.R.K. acknowledges Eli Lilly for a predoctoral fellowship.
T.J. thanks the Danish Council for Independent Research/Natural
Sciences for a postdoctoral fellowship. Materia, Inc. is gratefully
acknowledged for the donation of metathesis catalysts. Lawrence
Henling and Dr. Michael Day are acknowledged for X-ray crystal-
lographic structure determination. The Bruker KAPPA APEXII X-ray
diffractometer used in this study was purchased via an NSF
CRIF:MU award to Caltech (CHE-0639094). Prof. Sarah Reisman, Dr.
Scott Virgil, Dr. Christopher Henry, and Dr. Nathaniel Sherden
contributed with helpful discussions. Dr. David VanderVelde and
Dr. Scott Ross are acknowledged for NMR assistance. The Varian
400 MR instrument used in this study was purchased via an NIH
award to Caltech (NIH RR027690). Dr. Mona Shahgholi and Naseem
Torian are acknowledged for high-resolution mass spectrometry
assistance.
8. Concurrent with our efforts, palladium-catalyzed asymmetric allylic alkylations
to form enantioenriched
a-quaternary cyclic ketones and vinylogous esters/
thioesters were reported by Trost. See: (a) Trost, B. M.; Pissot-Soldermann, C.;
Chen, I.; Schroeder, G. M. J. Am. Chem. Soc. 2004, 126, 4480e4481; (b) Trost, B.
M.; Schroeder, G. M. Chem.dEur. J. 2005, 11, 174e184; (c) Trost, B. M.; Pissot-
Soldermann, C.; Chen, I. Chem.dEur. J. 2005, 11, 951e959; (d) Trost, B. M.; Xu, J.
J. Am. Chem. Soc. 2005, 127, 2846e2847; (e) Trost, B. M.; Bream, R. N.; Xu, J.
Angew. Chem., Int. Ed. 2006, 45, 3109e3112.
9. 1,3-Cycloheptanedione (catalog #515981) and 3-isobutoxy-2-cyclohepten-1-
one (catalog #T271322) are commercially available from SigmaeAldrich. The
price of 1,3-cycloheptanedione is $40,000/mol. Adopted from Aldrich August
28th, 2011.
10. (a) Ragan, J. A.; Makowski, T. W.; am Ende, D. J.; Clifford, P. J.; Young, G. R.;
Conrad, A. K.; Eisenbeis, S. A. Org. Process Res. Dev. 1998, 2, 379e381; (b) Ragan,
J. A.; Murry, J. A.; Castaldi, M. J.; Conrad, A. K.; Jones, B. P.; Li, B.; Makowski, T.
W.; McDermott, R.; Sitter, B. J.; White, T. D.; Young, G. R. Org. Process Res. Dev.
2001, 5, 498e507; (c) Do, N.; McDermott, R. E.; Ragan, J. A. Org. Synth. 2008, 85,
138e146.
11. (a) Tani, K.; Behenna, D. C.; McFadden, R. M.; Stoltz, B. M. Org. Lett. 2007, 9,
2529e2531; (b) Krout, M. R.; Mohr, J. T.; Stoltz, B. M. Org. Synth. 2009, 86,
181e193.
12. (a) Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organomet. Chem.
1974, 65, 253e266; (b) Fairlamb, I. J. S.; Kapdi, A. R.; Lee, A. F. Org. Lett. 2004, 6,
4435e4438.
13. Pd2(pmdba)3 is preferable to Pd2(dba)3 in this reaction for ease of separation of
pmdba from the reaction products during purification. pmdba¼4,40-
Methoxydibenzylideneacetone.