J. Granifo et al. / Journal of Molecular Structure 1006 (2011) 684–691
691
1384, 808, 703 (Fig. S1). 1H NMR (200 MHz, CDCl3, 298 K): d = 9.29
(br d, 2H, J = 1.6 Hz), 8.63 (dd, 2H, J = 4.7, 1.2 Hz), 8.39 (dt, 2H,
J = 8.1, 1.7 Hz), 7.79 (s, 2H), AA0BB0 system observed at 7.57 (d, 2H,
8.6 Hz) and 7.30 (d, 2H, J = 8.6 Hz), 7.36 (dd, 2H, J = 7.9, 4.7), 2.48
(s, 3H) (Fig. S2). 13C-PND and 13C-DEPT NMR (50 MHz, CDCl3,
298 K): 155.00 (2C, Cquat.), 149.95 (2C, CH), 149.69 (1C, Cquat.),
148.13 (2C, CH), 140.76 (1C, Cquat.), 134.22 (2C, CH), 134.00 (3C,
Crystallographic Data Centre as supplementary publication No.
CCDC 838813. Copies of the data can be obtained, free of charge,
on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK,
(fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk).
Acknowledgements
C
quat.), 127.10 (2C, CH), 126.34 (2C, CH), 123.38 (2C, CH), 116.83
The authors acknowledge the Universidad de La Frontera (Proy-
ecto DIUFRO No. DI11-0026) for financial support. We also
acknowledge the ANPCyT (Project No. PME 01113) for the purchase
of the CCD diffractometer and the Spanish Research Council (CSIC)
for providing a free-of charge license to the Cambridge Structural
Database (Allen, 2002).
(2C, CH), 15.13 (1C, CH3) (Fig. S3). HRMS (FAB+) Calcd for
C
C
22H17N3S [M + 1]+ 356.1221, found 356.1219, MS (EI+, 70 eV) for
22H17N3S ([M]+) 355 (100%), 354 (16.7%), 339 (7.2%), 308 (6.3%),
340 (5.7%) (Fig. S4).
5.2. Synthesis of [Zn2(l-L1)(acac)4] (1)
Appendix A. Supplementary material
To a hot solution (using an oil bath at 64–68 °C) of L1 (30.0 mg,
0.084 mmol) in MeCN (15 mL) contained in a closed volumetric flask
(25 mL) was added an excess of Zn(acac)2 (442.8 mg, 1.680 mmol).
The resultant solution was heated in the oil bath for 26 h. Block-like
colourless crystals (suitable for single crystal X-ray analysis) were
obtained after the removal of the hot solvent, washing with MeCN
(5 ꢃ 5 mL) and diethyl ether (2 ꢃ 4 mL). Yield: 60 mg, 80.5%. Anal.
Calcd for C42H45N3O8SZn2: C, 57.15; H, 5.14; N, 4.76; S, 3.63. Found:
C, 57.38, H, 5.32, N: 4.54, S: 3.78. IR (KBr, cmꢄ1): 3078, 2915, 1582,
1514, 1383, 1014, 817, 406 (Fig. S5). 1H NMR (300 MHz, CDCl3,
298 K): d = 9.32 (2H, dd, J = 1.8, 1.5 Hz), 8.68 (2H, dt, J = 8.1,
1.8 Hz), 8.65 (2H, dd, J = 5.1, 1.5 Hz), 7.94 (2H, s), 7.66 (2H, d,
J = 6.9 Hz) 7.57 (2H, dd, J = 8.1, 5.1 Hz), 7.40 (2H, d, J = 6.9 Hz), 5.40
(4H, s), 2.57 (3H, s), 2.04 (24H, s) (Fig. S6). 13C-PND and 13C-DEPT-
135 NMR (75 MHz, CDCl3, 298 K): 193.67 (8C, Cquat.), 154.27 (2C,
Supplementary data associated with this article can be found, in
References
[1] E.C. Constable, Chem. Soc. Rev. 36 (2007) 246–253.
[2] I. Eryazici, Ch.N. Moorefield, G.R. Newkome, Chem. Rev. 108 (2008) 1834–
1895.
[3] (a) L. Hou, D. Li, Inorg. Chem. Commun. 8 (2005) 190;
(b) X.-Z. Li, M. Li, Z. Li, J.-Z. Hou, X.-C. Huang, D. Li, Angew. Chem. Int. Ed. 47
(2008) 6371;
(c) E.C. Constable, G. Zhang, C.E. Housecroft, M. Neuburger, J.A. Zampese,
CrystEngComm 11 (2009) 2279;
(d) E.C. Constable, G. Zhang, E. Coronado, C.E. Housecroft, M. Neuburger,
CrystEngComm 12 (2010) 2139.
[4] (a) J. Granifo, M. Vargas, M.T. Garland, A. Ibañez, R. Gaviño, R. Baggio, Inorg.
Chem. Commun. 11 (2008) 1388;
(b) C. Liu, Y.-B. Ding, X.-H. Shi, D. Zhang, M.-H. Hu, Y.-G. Yin, D. Li, Cryst.
Growth Des. 9 (2009) 1275.
[5] H. Suezawa, T. Yoshida, Y. Umezawa, S. Tsuboyama, M. Nishio, Eur. J. Inorg.
Chem. (2002) 3148.
[6] (a) T. Steiner, Angew. Chem. Int. Ed. 41 (2002) 48;
(b) G.R. Desiraju, Acc. Chem. Res. 29 (1996) 441;
T. Steiner, Chem. Commun. (1997) 727.
Cquat.), 150.49 (1C, Cquat.), 149.47 (2C, CH), 147.82 (2C, CH), 141.48
(1C, Cquat.), 136.64 (2C, CH), 135.43 (2C, Cquat.), 133.85 (1C, Cquat.),
127.23 (2C, CH), 126.63 (2C, CH), 124.52 (2C, CH), 117.48 (2C, CH),
100.01 (4C, CH), 28.26 (8C, CH3), 15.31 (1C, CH3) (Fig. S7).
5.3. X-ray crystallography
ˇ ˇ
´
´
´
´
[7] M.K. Milcic, V.B. Medakovic, D.N. Sredojevic, N.O. Juranic, S.D. Zaric, Inorg.
Chem. 45 (2006) 4755.
Crystal data were collected on a Oxford Gemini CCD S Ultra dif-
[8] E. Medlycott, G.S. Hanan, Chem. Soc. Rev. 34 (2005) 133.
[9] R.E. Rosenfield Jr., R. Patthasarathy, J.D. Dunitz, J. Am. Chem. Soc. 99 (1977)
4860.
[10] M. Iwaoka, S. Takemoto, S. Tomoda, J. Am. Chem. Soc. 124 (2002) 10613.
[11] J.-A. van den Berg, K.R. Seddon, Cryst. Growth Des. 3 (2003) 643.
[12] A. Esparza-Ruiz, A. Pena-Hueso, J. Hernandez-Diaz, A. Flores-Parra, R.
Contreras, Cryst. Growth Des. 7 (2007) 2031.
[13] R. Dubey, A.K. Tewari, K. Ravikumar, B. Sriddhar, Bull. Korean Chem. Soc. 31
(2010) 1326.
[14] C. Bazzicalupi, A. Bencini, A. Bianchi, A. Danesi, E. Faggi, C. Giorgi, S. Santarelli,
B. Valtancoli, Coord. Chem. Rev. 252 (2008) 1052.
fractometer at room temperature using Mo
Ka radiation
(k = 0.71073 Å). The structure was solved by direct methods and
refined by full-matrix least squares on F2 using the SHELXS-97 soft-
ware [16]. All non-hydrogen atoms were refined anisotropically.
Hydrogen atoms were found in a difference Fourier but further ide-
alized. The structural analysis was performed with the help of the
multipurpose PLATON program [17].
Data collection and refinement parameters are summarized in
Table 2. The molecular representations shown in the figures were
generated using XP in the SHELXTL package [16] and VESTA [18].
Crystallographic data (excluding structure factors) for the struc-
tures in this paper have been deposited with the Cambridge
[15] G.R. Hanan, J. Wang, Synlett 8 (2005) 1251.
[16] G.M. Sheldrick, Acta Crystallogr., A 64 (2008) 112–122.
[17] A.L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University,
Utrecht, The Netherlands, 2005.
[18] K. Momma, F. Izumi, J. Appl. Crystallogr. 41 (2008) 653–658.