Table 2 Substrate suitability for the Pd-catalyzed asymmetric allylic arylationa
Alkylation product
Recovered alcohol
Yieldc [%]
E/Zb
eed [%]
3
Yieldc [%]
eee [%]
f
Entry
R
Ar
Conv.b [%]
krel
5
1
2
3
4
5
6
7
8
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
p-CNPh
p-CH3Ph
p-MeOPh
m-ClPh
o-ClPh
2,4-diClPh
p-NO2Ph
CH3
o-CH3Ph
m-CH3Ph
p-CH3Ph
m-ClPh
p-ClPh
o-CH3Oph
2-Naph
p-C6H5Ph
Ph
Ph
Ph
Ph
Ph
8
5ab
5ac
5ad
5ae
5af
5ag
5ah
5ai
5ba
5ca
5da
5ea
5fa
5ga
5hf
5ia
8
98 : 2
94 : 6
96 : 4
90 : 10
90 : 10
94 : 6
90 : 10
93 : 7
93 : 7
90 : 10
99 : 1
94 : 6
99 : 1
95 : 5
98 : 2
99 : 1
94 : 6
93
95
95
97
98
94
98
99
99
99
98
99
98
99
99
99
99
3a
3a
3a
3a
3a
3a
3a
3a
3b
3c
3d
3e
3f
90
76
63
63
51
74
61
50
52
63
70
55
62
56
47
41
37
5
22
38
26
60
15
38
61
70
36
32
48
30
34
90
91
92
3.9
6.9
7.4
3.5
10.5
4.3
7.4
9.9
17.6
7.1
11.2
6.6
5.0
3.8
24
36
36
46
23
36
46
47
35
29
44
34
42
51
58
62
23
36
35
45
22
34
45
45
34
28
44
33
40
50
57
61
9
10
11
12
13
14
15
16
17
Ph
3g
3h
3i
p-ClPh
Ph
Ph
42.2
14.9
11.1
Cyclohexyl
5ja
3j
18
Ph
22
5ka
21
94 : 6
62
3k
76
13
3.1
a
b
Reaction conditions: 1.0 mL CH3CN, 0.1 mmol 3, 0.2 mmol 4, 15 mol% (aS,S)-2a, 15 mol% AgOTf, 0.05 mmol NEt3. Determined by crude
1H NMR spectra. Isolated yields. The enantioselectivity of (E)-5 was determined by chiral HPLC analysis. Determined by chiral HPLC
c
d
e
f
analysis. krel = ln[(1 – C)(1 À ee)]/ln[(1 – C)(1 + ee)], C: Conversion of 3, ee: % ee of recovered 3.
M. L. Crawley, Chem. Rev., 2003, 103, 2921; (e) Z. Lu and S. Ma,
Angew. Chem., Int. Ed., 2008, 47, 258.
Notes and references
1 (a) J. D. Morrison, Asymmetric Synthesis, Academic Press, New York,
1985, vol. 5; (b) B. Bosnich, Asymmetric Catalysis, Martinus Nijhoff
Publishers, Dordrecht, The Netherlands, 1986; (c) R. Noyori and
M. Kitamura, In Modern Synthetic Methods, ed. R. Scheffold, Springer-
Verlag, Berlin, Heidelberg, 1989, vol. 5; (d) R. A. Sheldon, Chirotechnology,
Marcel Dekker, New York, 1993; (e) R. Noyori, Asymmetric Catalysis in
9 For examples, see: (a) H. Saburi, S. Tanaka and M. Kitamura,
Angew. Chem., Int. Ed., 2005, 44, 1730; (b) B. M. Trost and
J. Quancard, J. Am. Chem. Soc., 2006, 128, 6314; (c) C. Defieber,
M. A. Ariger, P. Moriel and E. M. Carreira, Angew. Chem., Int. Ed.,
2007, 46, 3139; (d) M. Roggen and E. M. Carreira, J. Am. Chem. Soc.,
2010, 132, 11917; (e) Y. Yamashita, A. Gopalarathnam and
J. F. Hartwig, J. Am. Chem. Soc., 2007, 129, 7508.
Organic Synthesis, John Wiley
&
Sons, New York, 1994;
(f) E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Comprehensive Asym-
metric Catalysis, Springer, Berlin, 1999, vol. I–III; (g) I. Ojima, Catalytic
Asymmetric Synthesis, Wiley-VCH, New York, 2nd edn, 2000.
2 (a) A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito,
T. Souchi and R. Noyori, J. Am. Chem. Soc., 1980, 102, 7932;
(b) R. Noyori, Angew. Chem., Int. Ed., 2002, 41, 2008.
3 For examples, see: (a) K. Tamao, H. Yamamoto, H. Matsumoto,
N. Miyake, T. Hayashi and M. Kumada, Tetrahedron Lett., 1977,
18, 1389; (b) R. H. Grubbs and R. A. DeVries, Tetrahedron Lett.,
1977, 18, 1879; (c) G. Bringmann, A. J. Price Mortimer,
P. A. Keller, M. J. Gresser, J. Garner and M. Breuning, Angew.
Chem., Int. Ed., 2005, 44, 5384.
10 M. Bandini, Angew. Chem., Int. Ed., 2011, 50, 994.
11 W. -L. Duan, M. Shi and G. -B. Rong, Chem. Commun., 2003, 2916.
12 Selected reviews, see: (a) B. L. Feringa, Acc. Chem. Res., 2000,
33, 346; (b) S. R. Harutyunyan, T. Hartog, K. Geurts, A. J.
B. Minnaard and L. Feringa, Chem. Rev., 2008, 108, 2824;
(c) A. Alexakis, J. E. Backvall, N. Krause, O. Pamies and
¨
´
M. Dieguez, Chem. Rev., 2008, 108, 2796.
13 For reviews, see: (a) Y. Tamaru, Eur. J. Org. Chem., 2005, 2647;
(b) J. Muzart, Tetrahedron, 2005, 61, 4179.
14 For reviews, see: (a) J. M. Keith, J. F. Larrow and E. N. Jacobsen,
Adv. Synth. Catal., 2001, 343, 5; (b) E. Vedejs and M. Jure, Angew.
Chem., Int. Ed., 2005, 44, 3974.
4 For examples, see: (a) L. H. Bock and R. Adams, J. Am. Chem.
Soc., 1931, 53, 374; (b) L. H. Bock and R. Adams, J. Am. Chem.
Soc., 1931, 53, 3519.
15 For a book, see: M. Shi, F. Wang, M. Zhao and Y. Wei, The
Chemistry of the Morita-Baylis-Hillman Reaction, Royal Society of
Chemistry, 2011, DOI: 10.1039/9781849731294.
5 X. Dai and S. Virgil, Tetrahedron Lett., 1999, 40, 1245.
6 (a) E. Bappert and G. Helmchen, Synlett, 2004, 1789; (b) H. Horibe,
K. Kazuta, M. Kotoku, K. Kondo, H. Okuno, Y. Murakami and
T. Aoyama, Synlett, 2003, 13, 2047; (c) K. Kamikawa, S. Kinoshita,
H. Matsuzaka and M. Uemura, Org. Lett., 2006, 8, 1097.
7 (a) N. Debono, Y. Canac, C. Duhayon and R. Chauvin, Eur. J. Inorg.
Chem., 2008, 2991; (b) I. Abdellah, N. Debono, Y. Canac, C. Duhayon
and R. Chauvin, Dalton Trans., 2009, 7196; (c) I. Abdellah, C. Lepetit,
Y. Canac, C. Duhayon and R. Chauvin, Chem.–Eur. J., 2010, 16, 13095.
8 Selected reviews, see: (a) J. Tsuji, Acc. Chem. Res., 1969, 2, 144;
(b) B. M. Trost, Tetrahedron, 1977, 33, 2615; (c) B. M. Trost and
D. L. Van Vranken, Chem. Rev., 1996, 96, 395; (d) B. M. Trost and
16 Y. Imai, W. Zhang, T. Kida, Y. Nakatsuji and I. Ikeda, Tetra-
hedron Lett., 1997, 38, 2681.
17 (a) T. Gendrineau, J.-P. Genet and S. Darses, Org. Lett., 2010,
12, 308; (b) Y. Wang, X. Feng and H. Du, Org. Lett., 2011, 13, 4954.
18 (a) N. T. McDougal and S. E. Schaus, J. Am. Chem. Soc., 2003,
125, 12094; (b) A. Bugarin and B. T. Connell, Chem. Commun.,
2010, 46, 2644.
19 For reviews, see: (a) T. Hayashi, Synlett, 2001, 879; (b) K. Fagnou
and M. Lautens, Chem. Rev., 2003, 103, 169; (c) T. Hayashi and
K. Yamasaki, Chem. Rev., 2003, 103, 2829.
20 H. Ohmiya, Y. Makida, D. Li, M. Tanabe and M. Sawamura,
J. Am. Chem. Soc., 2010, 132, 879.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 12813–12815 12815