reported transition-metal-catalyzed cascade reactions in-
cluding an A3 coupling and the subsequent nucleophilic
cyclization onto an alkyne moiety, leading to heterocyclic
compounds. However, to the best of our knowledge, there
have been no reports of three-component annulation in
which all the reaction components of A3 coupling are
incorporated in the newly formed ring.
dihydropyrazoles 5 (Scheme 1). This annulation consists
of the novel catalytic A3 coupling using hydrazine deri-
vatives and 5-endo-dig intramolecular hydroamination of
the resulting propargyl hydrazine 4. Both reactions are
desirably promoted by the same gold catalyst.9,10 We
expected that the regioselectivity can be controlled by
differentiation of the electron density of the two nitrogen
atoms of the hydrazines. These two nucleophilic groups
can serve as the first hydrazonium construction11 and
the consecutive cyclization separately by using two dis-
tinctive accessory groups (R4 and R5). By utilizing the
enamine structure of the resulting dihydropyrazoles
5, further gold-catalyzed nucleophilic cyclization might
produce fused pyrazole derivatives when using alkyne
components bearing an additional functionality. Herein
we describe a gold-catalyzed annulation12,13 of alkynes,
hydrazines,14 and aldehydes/ketones for diversity-oriented
and regioselective synthesis of pyrazole derivatives. The
only waste product of the reaction would be water. Direct
synthesis of fused tricyclic compounds 6 via a gold-
catalyzed cascade cyclization using 1,2-dialkynylbenzene
derivatives as the alkyne component is also described.15
Initial investigations focused on the search for suitable
catalysts and solvents for the three-component annula-
tion of phenylacetylene (1a), isobutyraldehyde (2a), and
hydrazine derivative 3a (Table 1). The screening of various
Scheme 1. Gold-Catalyzed Three-Component Annulation
(9) For gold-catalyzed Mannich-type reactions of terminal alkynes,
see: (a) Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584–9585. (b) Lo,
V. K.-Y.; Kung, K. K.-Y.; Wong, M.-K.; Che, C.-M. J. Organomet.
Chem. 2009, 694, 583–591. (c) Graf, T. A.; Anderson, T. K.; Bowden,
N. B. Adv. Synth. Catal. 2011, 353, 1033–1038. (d) Cheng, M.; Zhang,
Q.; Hu, X.-Y.; Li, B.-G.; Ji, J.-X.; Chan, A. S. C. Adv. Synth. Catal. 2011,
353, 1274–1278. For a review, see: (e) Skouta, R.; Li, C.-J. Tetrahedron
2008, 64, 4917–4938.
Pyrazole derivatives are well recognized as an impor-
tant class of heterocyclic compounds which exhibit a
variety of biological activities.6 Although a number of
approaches to pyrazole derivatives have been developed,7
they sometimes, especially for polysubstituted ones, suf-
fer from the need for preparation via multistep processes,
a limited scope of substituents, and/or regioselectivity in
the substitution of two adjacent nitrogen atoms. Hence,
development of the multicomponent annulation metho-
dology that provides an efficient and diversity-oriented
route to pyrazole derivatives would facilitate the identi-
fication of pyrazole-based biologically active molecules.8
For this purpose, we designed a novel gold-catalyzed
three-component annulation of alkynes 1, aldehydes/
ketones 2, and hydrazines 3 yielding highly functionalized
(10) The silver-catalyzed cyclizationa or iodocyclizationb of propar-
gylhydrazine derivatives have been reported recently, see: (a) Lee, Y. T.;
Chung, Y. K. J. Org. Chem. 2008, 73, 4698–4701. (b) Okitsu, T.; Sato,
K.; Wada, A. Org. Lett. 2010, 12, 3506–3509.
(11) Quite recently, Hashmi et al. have reported related iminium-type
intermediates (4,5-dihydrooxazoliums) and the nucleophilic attack to
these intermediates in gold-catalyzed reactions; see: Hashmi, A. S. K.;
Molinari, L.; Rominger, F.; Oeser, T. Eur. J. Org. Chem. 2011, 2256–
2264.
(12) Zhang et al. have reported a gold-catalyzed [2 þ 2 þ 1] annula-
tion of terminal alkynes, nitriles, and an oxygen atom derived from an
oxidant yielding 2,5-disubstituted oxazoles; see: He, W.; Li, C.; Zhang,
L. J. Am. Chem. Soc. 2011, 133, 8482–8485.
(13) For reviews on the gold-catalyzed synthesis of heterocycles, see:
€
(a) Hashmi, A. S. K.; Buhrle, M. Aldrichimica Acta 2010, 43, 27–33. (b)
Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536–6544.
(14) For the use of hydrazines in gold-catalyzed conversions, see: (a)
€
€
Hashmi, A. S. K.; Buhrle, M.; Wolfle, M.; Rudolph, M.; Wieteck, M.;
Rominger, F.; Frey, W. Chem.;Eur. J. 2010, 16, 9846–9854. (b) Patil,
N. T.; Konala, A. Eur. J. Org. Chem. 2010, 6831–6839. (c) Kinjo, R.;
Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2011, 50, 5560–
5563. Very recently, He et al. have reported gold-catalyzed synthesis of
dihydropyrazoles using alkynes and diaziridines; see: Capretto, D. A.;
Brouwer, C.; Poor, C. B.; He, C. Org. Lett. 2011, 13, 5842–5845.
(15) Recently, our group has reported a gold-catalyzed cascade
cyclization using diyne derivatives; see: (a) Hirano, K.; Inaba, Y.;
Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Adv. Synth. Catal. 2010,
352, 368–372. (b) Hirano, K.; Inaba, Y.; Takahashi, N.; Shimano, M.;
Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2011, 76, 1212–1227. See
also: (c) Hirano, K.; Inaba, Y.; Takasu, K.; Oishi, S.; Takemoto, Y.;
Fujii, N.; Ohno, H. J. Org. Chem. 2011, 76, 9068–9080. Hashimi et al.
have also reported gold-catalyzed cascade reactions using ene-(di)yne
compounds; see: (d) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. Org.
Lett. 2001, 3, 3769–3771. (e) Hashmi, A. S. K.; Grundl, L. Tetrahedron
(6) For examples, see: (a) Terrett, N. K.; Bell, A. S.; Brown, D.; Ellis,
P. Bioorg. Med. Chem. Lett. 1996, 6, 1819–1824. (b) Penning, T. D.;
Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.;
Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers,
R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn,
J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.;
Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40,
1347–1365. (c) Yabanoglu, S.; Ucar, G.; Gokhan, N.; Salgin, U.;
Yesilada, A.; Bilgin, A. J. Neural. Transm. 2007, 114, 769–773. (d)
Donohue, S. R.; Dannals, R. F.; Halldin, C.; Pike, V. W. J. Med. Chem.
2011, 54, 2961–2970.
ꢀ
ꢀ
(7) For a recent review, see: Fustero, S.; Sanchez-Rosello, M.; Barrio,
ꢀ
P.; Simon-Fuentes, A. Chem. Rev. 2011, 111, 6984–7034.
(8) For multicomponent syntheses of pyrazole derivatives, see: (a)
Ahmed, M. S. M.; Kobayashi, K.; Mori, A. Org. Lett. 2005, 7, 4487–
4489. (b) Liu, H.-L.; Jiang, H.-F.; Zhang, M.; Yao, W.-J.; Zhu, Q.-H.;
€
€
Tang, Z. Tetrahedron Lett. 2008, 49, 3805–3809. (c) Willy, B.; Muller,
2005, 61, 6231–6236. (f) Hashmi, A. S. K.; Haffner, T.; Rudolph, M.;
T. J. J. Org. Lett. 2011, 13, 2082–2085.
Rominger, F. Chem.;Eur. J. 2011, 17, 8195–8201.
Org. Lett., Vol. 14, No. 1, 2012
327