ORGANIC
LETTERS
2012
Vol. 14, No. 1
362–365
Asymmetric Synthesis of Trisubstituted
Allenes: Copper-Catalyzed Alkylation and
Arylation of Propargylic Phosphates
Mycah R. Uehling, Samuel T. Marionni, and Gojko Lalic*
Department of Chemistry, University of Washington, Seattle, Washington 98195,
United States
Received November 20, 2011
ABSTRACT
Asymmetric synthesis of trisubstituted allenes is accomplished by copper-catalyzed alkylation and arylation of propargylic phosphates using
organoboron nucleophiles. Excellent chirality transfer and regioselectivity, together with good functional group compatibility, were observed in
reactions with both alkyl boranes and arylboronic esters.
Allenes play an important role in organic chemistry as
synthetic targets1 and intermediates.2 While numerous
methods for their synthesis exist,3 asymmetric synthesis
of chiral allenes is still a considerable challenge. Most
methods mandate the presence of a specific functional
group in the allene product,4 and have a limited substrate
scope. Reactionsdevelopedby Myers5 and Ready6 have no
such requirements and can be applied to the synthesis of a
wide variety of chiral allenes. Unfortunately, neither meth-
od can be used to prepare trisubstituted allenes. In view of
the limitations of existing methodology and the utility of
chiral trisubstituted allenes as synthetic intermediates,7 we
pursued the development of a practical method for their
synthesis.
We used copper-catalyzed substitution of propargylic
electrophiles as a starting point for the development of
such a method.8,3a This transformation has a broad scope
and relies on readily available substrates. However, its
applications in asymmetric synthesis have been limited
(1) (a) Cleasson, A. In The Chemistry of the Allenes; Landor, S. R., Ed.;
€
Academic Press: London, 1982. (b) Hoffmann-Roder, A.; Krause, N. Angew.
Chem., Int. Ed. 2004, 43, 1196.
(2) (a) Ma, S. Acc. Chem. Res. 2003, 36, 701. (b) Ma, S. Chem. Rev.
ꢀ
~
2005, 105, 2829. (c) Alvarez-Corral, M.; Munoz-Dorado, M.; Rodrıguez-
Garcıa, I. Chem. Rev. 2008, 108, 3174. (d) Bongers, N.; Krause, N. Angew.
Chem., Int. Ed. 2008, 47, 2178. (e) Widenhoefer, R. A. Chem.;Eur. J.
2008, 14, 5382. (f) Ma, S. Acc. Chem. Res. 2009, 42, 1679. (g) Aubert, C.;
Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Chem. Rev.
ꢀ
2011, 111, 1954. (h) Corma, A.; Leyva-Perez, A.; Sabater, M. J. Chem.
Rev. 2011, 111, 1657.
(3) Selected reviews on allene synthesis: (a) Krause, N.; Hoffmann-Roder,
€
A. Tetrahedron 2004, 60, 11671. (b) Brummond, K. M.; DeForrest
J. E. Synthesis 2007, 795. (c) Yu, S.; Ma, S. Chem. Commun. 2011, 47
5384.
(5) Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492.
(6) Pu, X.; Ready, J. M. J. Am. Chem. Soc. 2008, 130, 10874.
(7) (a) Wan, Z.; Nelson, S. G. J. Am. Chem. Soc. 2000, 122, 10470. (b)
Liu, Z.; Wasmuth, A. S.; Nelson, S. G. J. Am. Chem. Soc. 2006, 128,
10352. (c) Volz, F.; Krause, N. Org. Biomol. Chem. 2007, 5, 1519. (d)
Volz, F.; Wadman, S. H.; Hoffmann-Roder, A.; Krause, N. Tetrahedron
2009, 65, 1902.
(8) Rona, P.; Crabbe, P. J. Am. Chem. Soc. 1968, 90, 4733.
(9) Selected examples: (a) Oehlschlager, A. C.; Czyzewska, E. Tetra-
hedron Lett. 1983, 24, 5587. (b) Alexakis, A.; Marek, I.; Mangeney, P.;
Normant, J. F. J. Am. Chem. Soc. 1990, 112, 8042. (c) Gooding, O. W.;
Beard, C. C.; Jackson, D. Y.; Wren, D. L.; Cooper, G. F. J. Org. Chem.
1991, 56, 1083. (d) Myers, A. G.; Condroski, K. R. J. Am. Chem. Soc.
1995, 117, 3057. (e) Brummond, K. M.; Kerekes, A. D.; Wan, H. J. Org.
Chem. 2002, 67, 5156.
(4) (a) Han, J. W.; Tokunaga, N.; Hayashi, T. J. Am. Chem. Soc.
2001, 123, 12915. (b) Ogasawara, M.; Ikeda, H.; Nagano, T.; Hayashi, T.
J. Am. Chem. Soc. 2001, 123, 2089. (c) Schultz-Fademrecht, C.; WibbelingB.;
€
€
Frohlich, R.; Hoppe, D. Org. Lett. 2001, 3, 1221. (d) Sherry, B. D.;
Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978. (e) Trost, B. M.;
Fandrick, D. R.; Dinh, D. C. J. Am. Chem. Soc. 2005, 127, 14186. (f)
Ogasawara, M.; Fan, L.; Ge, Y.; Takahashi, T. Org. Lett. 2006, 8, 5409.
(g) Kolakowski, R. V.; Manpadi, M.; Zhang, Y.; Emge, T. J.; Williams,
L. J. J. Am. Chem. Soc. 2009, 131, 12910. (h) Liu, H.; Leow, D.; Huang,
K.-W.; Tan, C.-H. J. Am. Chem. Soc. 2009, 131, 7212. (i) Cerat, P.;
Gritsch, P. J.; Goudreau, S. R.; Charette, A. B. Org. Lett. 2010, 12, 564.
(j) Nishimura, T.; Makino, H.; Nagaosa, M.; Hayashi, T. J. Am. Chem.
Soc. 2010, 132, 12865.
r
10.1021/ol2031119
Published on Web 12/16/2011
2011 American Chemical Society