564
D.F. Back et al. / Polyhedron 31 (2012) 558–564
ClꢀꢀꢀH–C interactions appearing in Fig. 8, we are talking about trifur-
cated acceptor ClꢀꢀꢀH–C bonds.
enabling us to select the best data for the search of new, specific
interactions.
Fig. 9 shows two neighboring molecules of complex 2 along the
bc plane. As is clear to see in this position, there are two bifurcated
intramolecular ClꢀꢀꢀH–C interactions and a intermolecular, centro-
symmetric pair of non-classical hydrogen bonds, between the
atoms H08/C05# and H08#/C05, with a distance of 2.806 Å (sym-
metry code (#): 1 ꢁ x, ꢁy, 2 ꢁ z). Each of these units can be viewed
as a dimer related by an inversion center, and its linkage through
further H08xꢀꢀꢀC05y ‘‘double’’ interactions produces a 1-D supramo-
lecular arrangement (see Fig. 9).
Fig. 10 displays the molecular structure of the second title com-
plex, [(bapht)Pd(PPh3)2Cl] (3), which is structurally similar to the
previous described complex 2. The coordination model is the same,
with the triazenido ligand coordinating in a monodentate way the
divalent cation Pd(II). Also in 3 the neutrality of the complex is
achieved through the coordination of a chloride ligand to the metal
ion. A bifurcated intramolecular interaction between the hydrogen
atoms of the near located aromatic rings and the chloride ligand
are also present (H036 and H018), however, in this case, the
ClꢀꢀꢀH–C distances are slightly shorter than in 2 (2.730(2) and
2.679(1) Å respectively), although the HꢀꢀꢀClꢀꢀꢀH angle appears sig-
nificantly altered (154.42(1)°).
Fig. 11 shows the interesting association of two molecules of 3,
in a similar manner to that already seen for 2 (see Fig. 9). The link-
age of the neighboring molecules of 3 occurs, however, under for-
mation of a third secondary, intermolecular HꢀꢀꢀCl interaction, i.e.,
attaining a trifurcated hydrogen bonding. A good explanation for
the increase of the bond angle between the atoms of hydrogen
and chloride in the bifurcated HꢀꢀꢀCl interaction in 3 is this type
of intermolecular trifurcated donation, involving three receivers
[36–39]. This interaction is also responsible for the achievement
of a centrosymmetric dimer (Fig. 11), but, unlike complex 2, the di-
mers of complex 3 do not interact with each other, preventing the
formation of supramolecular assemblies in the crystal lattice. The
distances between the atoms involved in the trifurcated interac-
tions in the dimers of complex 3 are 2.679(1), 2.730(2) and
2.875(1) Å for H018ꢀꢀꢀCl, H036ꢀꢀꢀCl and H035#ꢀꢀꢀCl, respectively.
The bond angles are 68.15(2)° (H035#ꢀꢀꢀClꢀꢀꢀH018) and 120.3(1)°
(H035#ꢀꢀꢀClꢀꢀꢀH036) (symmetry transformations used to generate
equivalent atoms: (#) 2 ꢁ x, 1 ꢁ y, 1 ꢁ z).
Acknowledgment
Fapergs – Fundação de Amparo à Pesquisa do Estado do Rio
Grande do Sul. Edital No 003/2009.
Appendix A. Supplementary data
CCDC 818520, 818521 and 818522 contains the supplementary
crystallographic data for 1, 2 and 3. These data can be obtained free
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:
References
[1] P. Griess, Proc. Roy. Soc. London 9 (1859) 594.
[2] F.A. Schid, D.J. Hutchinson, Cancer Res. 7 (1974) 1671.
[3] Y.F. Shealy, C.A. Krauth, J.A. Montgomery, J. Org. Chem. 27 (1962) 2150.
[4] H. Druckrey, S. Ivankovic, R. Preussmann, Naturwissenschaften 54 (1967) 171.
[5] M. Sanada, Y. Takagi, R. Ito, M. Sekiguchi, DNA Repair 3 (2004) 413.
[6] Z. Rachid, F. Brahimi, Q. Qiu, C. Williams, J.M. Hartley, J.A. Hartley, B.J. Jean-
Claude, J. Med. Chem. 50 (2007) 2605.
[7] D.M. Khramov, C.W. Bielawski, J. Org. Chem. 72 (2007) 9407.
[8] M.N. Hansen, E. Farjami, M. Kristiansen, L. Clima, S.U. Pedersen, K. Daasbjerg,
E.E. Ferapontova, K.V. Gothelf, J. Org. Chem. 75 (8) (2010) 2474.
[9] D.S. Moore, S.D. Robinson, Adv. Inorg. Chem. Radiochem. 30 (1986) 1.
[10] M. Hörner, G. Manzoni de Oliveira, J.S. Oliveira, W.M. Teles, C.A.L. Filgueiras, J.
Beck, J. Organomet. Chem. 691 (2006) 251.
[11] J. T Lenan, H.A. Roman, A.R. Barrow, J. Chem. Soc., Dalton Trans. (1992) 2183.
[12] A.S. Peregudov, D.N. Kravtso, G.I. Drogunova, Z.A. Starikova, A.I. Yanovsky, J.
Organomet. Chem. 597 (2000) 164.
[13] G. Bombieri, A. Immirzi, L. Toniolo, Inorg. Chem. 15 (10) (1976) 2428.
[14] M. Hörner, G. Manzoni de Oliveira, J.S. Bonini, H. Fenner, J. Organomet. Chem.
691 (2006) 655.
[15] M. Hörner, G. Manzoni de Oliveira, J.A. Naue, J. Daniels, J. Beck, J. Organomet.
Chem. 691 (2006) 1051.
[16] M. Hörner, G. Manzoni de Oliveira, M.B. Behm, H. Fenner, Z. Anorg. Allg. Chem.
632 (2006) 615.
[17] M. Hörner, G. Manzoni de Oliveira, L.C. Visentin, R.S. Cezar, Inorg. Chim. Acta
359 (2006) 4667.
[18] M. Hörner, G. Manzoni de Oliveira, V.F. Giglio, L.C. Visentin, F. Broch, J. Beck,
Inorg. Chim. Acta 359 (2006) 2309.
[19] M. Hörner, G. Manzoni de Oliveira, L. Bresolin, A.B. de Oliveira, Inorg. Chim.
Acta 359 (2006) 4631.
[20] M. Hörner, G. Manzoni de Oliveira, E.G. Koehler, L.C. Visentin, J. Organomet.
Chem. 691 (2006) 1311.
[21] B. Stefane, M. Kotevar, S. Polanc, J. Org. Chem. 62 (1997) 7165.
[22] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.
[23] J.T. Leman, J. Braddck-Wilking, A.J. Coolong, A.R. Barron, Inorg. Chem. 32
(1993) 4324.
[24] R. Anulewicz, Acta Crystallogr., Sect. C 53 (1997) 345.
[25] M. Hörner, I.C. Casagrande, J. Bordinhão, C.M. Mössmer, Acta Crystallogr., Sect.
C 58 (2002) o193.
[26] L. Checinska, S.J. Grabowski, M. Malecka, J. Phys. Org. Chem. 16 (2003) 213.
[27] LaTeca S. Glass, B. Nguyen, K.D. Goodwin, C. Dardonville, W.D. Wilson, E.C.
Long, M.M. Georgiadis, Biochemistry 48 (2009) 5943.
[28] P. Sharma, M. Chawla, S. Sharma, A. Mitra, RNA 16 (2010) 942.
[29] G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond – In Structural Chemistry
4. Conclusions
The synthesis of organic ligands containing diazoaminic frag-
ments and their further deprotonation and coordination to a metal
center such as palladium revealed itself a new and efficient alter-
native for the obtention of crystalline solids with potential supra-
molecular trends, besides numerous forked hydrogen
interactions. Supramolecular structures containing these interac-
tions allow the full development of the crystal engineering, thus
enabling the understanding of peculiar features of these new mate-
rials. Since the main scope of this work is related with the second-
ary hydrogen bonds, we have quoted the separation between
hydrogen and the acceptor atoms, instead of the separation be-
tween the donor (mostly C) and acceptor atoms. Given the uncer-
tainty associated with the location of the H atoms using X-ray
crystallography, we have not fixed the hydrogens (as commonly
done), but evaluated its charge densities with measurement times
significantly longer than usual. With this procedure we have at-
tained more accurate hydrogen bonds distances.
and Biology (International Union of Crystallography
Crystallography), Oxford University Press, 2001.
– Monographs on
[30] K. Saigo, Y. Kobayashi, Chem. Rec. 7 (2007) 47.
[31] V. Spiwok, P. Lipovová, T. Skálová, E. Buchtelová, J. Hasek, B. Králová,
Carbohydr. Res. 339 (2004) 2275.
[32] P.S. Lakshminarayanan, D.K. Kumar, P. Ghosh, J. Am. Chem. Soc. 128 (2006)
9600.
[33] T.J. Mooibroek, P. Gamez, J. Reedijk, Cryst. Eng. Comm. 10 (2008) 1501.
[34] I. Caracelli, J. Zukerman-Schpector, S.H. Maganhi, H.A. Stefani, R. Guadagnin,
E.R.T. Tiekink, J. Braz. Chem. Soc. 21/11 (2010) 2155.
[35] M.A.P. Martins, D.N. Moreira, C.P. Frizzo, P.T. Campos, K. Longhi, M.R.B.
Marzari, N. Zanatta, H.G. Bonacorso, J. Mol. Struct. 969 (2010) 111.
[36] D. Ghoshal, A.K. Ghosh, J. Ribas, G. Mostafa, N.R. Chaudhuri, Cryst. Eng. Comm.
7 (2005) 616.
After these first reported results, a next step would be the mod-
ification of the steric and electronic effects of the suitable ligands,
probably also including phosphines. The triazenes used in this
work were of great importance to seek preliminary evidences, thus,
[37] T. Steiner, Angew. Chem., Int. Ed. 41 (2002) 48.
[38] G.R. Desiraju, S.K. Panigrahi, Proteins Struct. Funct. Bioinform. 67 (2007) 128.
[39] R.G. Gonnade, M.M. Bhadbhade, M.S. Shashidhar, Chem. Commun. 22 (2004)
2530.