´
77
A. Kudelko, W. Zielinski / Tetrahedron Letters 53 (2012) 76–77
O
R
O
O
method A and B
AcOH
+
NHNH2
R
Ph
O
N
N
3a-d
Ph
O
2
R = H, Me, Et, Ph
Scheme 2. Reaction of cinnamic acid hydrazide with triethyl orthoesters: method A—conducted using excess orthoester in the presence of AcOH (reflux, 9–40 h); method B—
conducted under microwave irradiation at 125 °C, 10 min.
Ronad, P.; Mamledesai, S.; Vishwanathswamy, A. H. M.; Satyanarayana, D. Med.
Chabukswar, A. R.; Shnide, D. B. Bioorg. Med. Chem. Lett. 2011, 21, 444; (f)
Bhandari, S. V.; Bothara, K. G.; Raut, M. K.; Patil, A. A.; Sarkate, A. P.; Mokale, V. J.
Bioorg. Med. Chem. Lett. 2008, 16, 1822; (g) Zheng, X.; Li, Z.; Wang, Y.; Chen, W.;
Huang, Q.; Liu, C.; Song, G. J. Fluorine Chem. 2003, 123, 163; (h) Zou, X. J.; Lai, L.
H.; Zhang, Z. X. J. Agric. Food Chem. 2002, 50, 3757.
Table 1
Products of the reaction of cinnamic acid hydrazide (2) with triethyl orthoesters
Product
R
Method A
Method B
Mp (°C)
Yielda (%) Time (h) Yielda (%) Time (min)
3a
3b
3c
3d
H
80
40
38
30
9
95
96
95
98
10
10
10
10
170–172
112–114
83–85
2. (a) Schulz, B.; Orgzall, I.; Freydank, A.; Xii, C. Adv. Colloid Interface Sci. 2005, 116,
143; (b) Chen, Z. K.; Meng, H.; Lai, Y. H.; Huang, W. Macromolecules 1999, 32,
4351; (c) Tamoto, N.; Adachi, C.; Nagai, K. Chem. Mater. 1997, 9, 1077; (d) Lv, H.
S.; Zhao, B. X.; Li, J. K.; Xia, Y.; Lian, S.; Liu, W. Y.; Gong, Z. L. Dyes Pigments 2010,
86, 25; (e) Tao, Y.; Wang, Q.; Shang, Y.; Yang, C.; Ao, L.; Qin, J.; Ma, D.; Shuai, Z.
Chem. Commun. 2009, 77.
Me 82
Et
Ph
86
95
128–1304c
a
Yield with respect to the starting hydrazide 2.
3. (a) Mikroyannidis, J. A.; Spiliopoulos, I. K.; Kasimiris, T. S.; Kulkarni, A. P.;
Jenekhe, S. A. Macromolecules 2003, 36, 9295; (b) Manjunatha, M. G.; Adhikari, A.
V.; Hedge, P. K.; Sandeep, C. S. S.; Philip, R. J. Electron. Mater. 2010, 39, 2711.
4. (a) Rajapakse, H. A.; Zhu, H.; Young, M. B.; Mott, B. T. Tetrahedron Lett. 2006, 47,
4827; (b) Kangani, C. O.; Day, B. W. Tetrahedron Lett. 2009, 50, 5332; (c)
Katritzky, A. R.; Mohapatra, P. P.; Huang, L. Arkivoc 2008, ix, 62.
the same reactions under microwave irradiation (method B). A ten-
minute irradiation time was sufficient to complete the reaction and
produce the title 1,3,4-oxadiazoles 3a–d exclusively, in excellent
yields, as summarized in Table 1. The new products were charac-
terized by elemental analysis and spectroscopic methods.9
In conclusion, we have developed an easy and efficient method
to synthesize 5-substituted 2-styryl-1,3,4-oxadiazoles from cin-
namic acid hydrazide and commercially available triethyl orthoes-
ters.9 This method has the advantage of providing the desired
products rapidly and in high yields which makes it a useful addi-
tion to the existing synthetic procedures.
5. Ignatenko, O. A.; Kuznetsov, M. A.; Selivanov, S. I. Russ. J. Org. Chem. 2007, 43,
1042.
´
6. Kudelko, A.; Zielinski, W. Tetrahedron 2009, 65, 1200.
7. Godtfredsen, W. O.; Vangedal, S. Acta Chem. Scand. 1955, 9, 1498.
8. Wagner-Jauregg, T.; Zirngibl, L.; Demolis, A.; Günther, H.; Tam, S. W. Helv. Chim.
Acta 1969, 52, 1672.
9. Representative procedure—(method B): A reaction mixture composed of cinnamic
acid hydrazide (2) (0.50 g, 3.0 mmol), triethyl orthopropionate (1.2 mL, 1.06 g,
6.0 mmol), and glacial AcOH (2 mL) was placed into a 10 mL thick-walled glass
tube and crimp-sealed. The reaction vessel was placed in a CEM Discover
microwave-enhanced synthesis system operating at 125 5 °C, power 250 W
and irradiated for 10 min. After cooling, the excess orthoester and AcOH were
evaporated under reduced pressure. The crude product was purified by column
chromatography over silica gel using an eluent of benzene/AcOEt, 1:5, v/v. The
pure 5-ethyl-2-styryl-1,3,4-oxadiazole (3c) was obtained in a 95% yield as a
white solid; mp 83–85 °C; Rf (benzene/AcOEt, 1:5 v/v) 0.55; [Found: C, 71.89; H,
5.98; N, 13.95. C12H12N2O requires C, 71.97; H, 6.05; N, 13.98%]. 1H NMR
(300 MHz, DMSO-d6): d 1.29 (3H, t, J 7.5 Hz, CH2CH3), 2.89 (2H, q, J 7.5 Hz,
CH2CH3), 7.29 (1H, d, J 16.2 Hz, Ph–CH@CH–), 7.37–7.45 (3H, m, Ph: H30, H40,
H50), 7.53 (1H, d, J 16.2 Hz, Ph–CH@CH–), 7.73–7.77 (2H, m, Ph: H20, H60). 13C
NMR (DMSO-d6): d 10.4 (CH2CH3), 18.4 (CH2CH3), 110.2 (Ph–CH@CH–), 127.7,
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Suwin´ ski, J.; Szczepankiewicz, W. In Comprehensive heterocyclic chemistry III;
Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier
Science Ltd: Oxford, 2008; Vol. 5, p 398; (b) Amir, M.; Shikha, K. Eur. J. Med.
Chem. 2004, 39, 535; (c) Almasirad, A.; Tabatabai, S. A.; Faizi, M.; Kebriaeezadeh,
A. Bioorg. Med. Chem. Lett. 2004, 14, 6057; (d) Ingale, N.; Maddi, V.; Palkar, M.;
128.9, 129.8, 134.7 (Ph), 138.1(Ph–CH@CH–), 163.8 (C2), 167.0 (C5). IR (ATR)
3159, 3060, 2940, 2161, 1979, 1648, 1570, 1524, 1479, 1446, 1397, 1380, 1188,
1075, 1032, 1001, 991, 976, 923, 856, 801, 788, 757, 707, 688, 674 cmꢁ1
m:
.