514
D. Mallick et al. / Polyhedron 31 (2012) 506–514
at the irradiation wavelength. The value of I0 was obtained by using
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:
azobenzene (/ = 0.11 for p–
p⁄ excitation [28]) under the same irra-
diation conditions.
The thermal cis-to-trans isomerisation rates were obtained by
monitoring absorption changes intermittently for a cis-rich solu-
tion kept in the dark at constant temperatures (T) in the range from
298 to 313 K. The activation energy (Ea) and the frequency factor
(A) were obtained from the Arrhenius plot, lnk = lnA ꢀ Ea/RT,
where k is the measured rate constant, R is the gas constant, and
References
[1] J.S. Miller, in: M. Drillon (Ed.), Magnetism: Molecules to Materials IV, Wiley-
VCH, Weinheim, 2003.
[2] S.R. Marder, in: D.W. Bruce, D.O. Hare (Eds.), Metal Containing Materials for
Nonlinear Optics in Inorganic Materials, second ed., Wiley, Chichester, 1996, p.
121.
[3] O.R. Evans, W. Lin, Acc. Chem. Res. 35 (2002) 511.
[4] Chem. Rev. 100 (2000) 7–4264 (special issue).
[5] B. Cornils, W.A. Herrmann, R. Schlogl (Eds.), Catalysis from A to Z: A Concise
Encyclopedia, John Wiley & Sons, New York, 2000.
T is temperature. The values of activation free energy (D
G⁄) and
activation entropy (D
S⁄) were obtained through the relationships,
D
G⁄ = Ea ꢀ RT ꢀ T
D
S⁄ and
D
S⁄ = [lnA ꢀ 1 ꢀ ln(kBT/h)/R where kB
and h are Boltzmann’s and Plank’s constants, respectively.
[6] D. Demus, J.W. Goodby, G.W. Gray, H.-W. Spiess, V. Vill (Eds.), Handbook of
Liquid Crystals, Wiley-VCH, Weinheim, 1998.
[7] J.R. Farraro, J.M. Williams, Introduction to Synthetic Electrical Conductors,
Academic Press, New York, 1987.
4. Conclusion
[8] H. Dürr, H. Bouas-Laurent (Eds.), Photochromism, Molecules and Systems,
Elsevier, Amsterdam, 2003.
[9] H. Nishihara, Bull. Chem. Soc. Jpn. 77 (2004) 407.
[10] N. Tamai, H. Miyasaka, Chem. Rev. 100 (2000) 1875.
[11] S. Yagai, V. Karatsu, A. Kitamura, Chem. Eur. J. 11 (2005) 4054.
[12] M. Ire, Chem. Rev. 100 (2000) 1683.
1-Alkyl-2-(arylazo)imidazoles, Raai-CnH2n+1 where n = 4, 6 and
8 are used in this study. Mercury(II)-iodide complexes of these
ligands exist in iodide-bridge dimeric structure, [Hg(Raai-
CnH2n+1)(l-I)(I)]2. The complexes are characterised by spectro-
scopic techniques and in one case the structure is confirmed by
single crystal X-ray diffraction study. Photochromism of the
complexes are examined by repetitive UV light irradiation in meth-
anol solution for the ligands and the DMF solution is used for the
complexes. The rate and quantum yields of E-to-Z isomerisation
of the complexes are less than that of free ligand data. The rotor
mass and volume may be the regulating agents for this observa-
tion. The E-to-Z isomerisation is thermally driven process. The acti-
vation energies (Eas) of isomerisation of the free ligands are three
times greater than that of the complexes that implies the lowering
of rate in the complexes. Besides, the higher rotor volume and
mass of the complexes may support the slow rate of isomerisation
than that of free ligands.
[13] S. Kawata, Y. Kawata, Chem. Rev. 100 (2000) 1777.
[14] M. Sauer, Proc. Natl. Acad. Sci. USA 102 (2005) 9433.
[15] U. Ray, D. Banerjee, G. Mostafa, T.-H. Lu, C. Sinha, New J. Chem. 28 (2004) 1437.
[16] J. Dinda, S. Jasimuddin, G. Mostafa, C.-H. Hung, C. Sinha, Polyhedron 23 (2004)
793.
[17] J. Dinda, S. Senapoti, T. Mondal, A.D. Jana, M. Chiang, T.-H. Lu, C. Sinha,
Polyhedron 25 (2006) 1125.
[18] M.N. Ackermann, M.P. Robinson, I.A. Maher, E.B. LeBlanc, R.V. Raz, J.
Organomet. Chem. 682 (2003) 248.
[19] T. Michinobu, R. Eto, H. Kumazawa, N. Fujii, K. Shigehara, J. Macromol. Sci. A 48
(2011) 625.
[20] J. Otsuki, K. Suwa, K. Narutaki, C. Sinha, I. Yoshikawa, K. Araki, J. Phys. Chem. A
109 (2005) 8064.
[21] J. Otsuki, K. Suwa, K.K. Sarker, C. Sinha, J. Phys. Chem. A 111 (2007) 1403.
[22] K.K. Sarker, A.D. Jana, G. Mostafa, J.-S. Wu, T.-H. Lu, C. Sinha, Inorg. Chim. Acta
359 (2006) 4377.
[23] K.K. Sarker, D. Sardar, K. Suwa, J. Otsuki, C. Sinha, Inorg. Chem. 46 (2007) 8291.
[24] K.K. Sarker, B.G. Chand, K. Suwa, J. Cheng, T.-H. Lu, J. Otsuki, C. Sinha, Inorg.
Chem. 46 (2007) 670.
[25] P. Pratihar, T.K. Mondal, A.K. Patra, C. Sinha, Inorg. Chem. 48 (2009) 2760.
[26] Martyn J. Earle, Kenneth R. Seddon, Pure Appl. Chem. 72 (2000) 1391.
[27] M.J. Molina, M.R. Gomez-anto, B.L. Rivas, H.A. Maturana, I.F. Pierola, J. Appl.
Polym. Sci. 79 (2001) 1467.
[28] G. Zimmerman, L. Chow, U. Paik, J. Am. Chem. Soc. 80 (1958) 3528.
[29] T.K. Misra, D. Das, C. Sinha, P.K. Ghosh, C.K. Pal, Inorg. Chem. 37 (1998) 1672.
[30] N. Nishimura, T. Sueyoshi, H. Yamanaka, E. Imai, S. Yamamoto, S. Hasegawa,
Bull. Chem. Soc. Jpn. 49 (1976) 1381.
[31] A.T. Hutton, H.M.N.H. Irving, J. Chem. Soc., Dalton Trans. (1982) 2299.
[32] G.M. Sheldrick, SADBAS, University of Göttingen, Germany, 1997.
[33] G.M. Sheldrick, Acta Crystallogr., Sect. A64 (2008) 112.
[34] A.L. Spek, Acta Crystallogr., Sect. D65 (2009) 148.
[35] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
Acknowledgements
Financial support from Department of Science & Technology,
New Delhi is thankfully acknowledged. One of us (A. Nandi) thanks
the University Grants Commission, New Delhi for fellowship.
Appendix A. Supplementary data
CCDC 835026 contains the supplementary crystallographic data
for [Hg(Meaai-C6H13)(l-I)(I)]2 (5b). These data can be obtained free