S. Priyarega et al. / Polyhedron 34 (2012) 143–148
147
Table 6
Catalytic N-arylation of imidazole using [(PPh3)2ClPd(L1)PdCl].
Entry
1
Aryl halide
Product
Reaction time (h)
28
Isolated yield (%)
83
85
78
81
89
82
84
CN
Cl
N
N
N
N
N
N
N
CN
N
N
N
N
N
N
N
2
3
4
5
6
7
28
24
24
24
24
24
CN
Br
Cl
Br
Cl
Cl
Br
CN
COOH
COOH
NO2
CF3
COOH
COOH
NO2
CF3
CF3
CF3
around Pd(II) centers [Cl(1)–Pd(1)–N(1) 173.2(2)°, O(1)–Pd(1)–
O(2) 177.7(2)°, Cl(2)–Pd(2)–N(2) 176.96(17)°, P(1)–Pd(2)–P(2)
174.48(8)°]. The Pd–N, Pd–O, Pd–Cl and Pd–P distances are all
quite normal and so are phenolic C–O, carbonyl C@O and azome-
thine C@N distances of the coordinated ligand [30,31]. Around
Pd(2), triphenylphosphine ligands are trans to each other. This
complex contains 1.5 acetonitrile molecules in the lattice.
The results obtained from various spectroscopic techniques and
single crystal X-ray crystallography of one of the complexes re-
vealed that the ligands act as tridentate donor to one metal center
and monodentate donor to another metal center yielding binuclear
Pd(II) complexes.
Appendix A. Supplementary data
CCDC 845753 contains the supplementary crystallographic data
for the complex [(PPh3)2ClPd(L1)PdCl]Á1.5CH3CN. These data can
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-
336-033; or e-mail: deposit@ccdc.cam.ac.uk.
References
[1] J. Costamagna, J. Vargas, R. Latorre, A. Alvarado, G. Mena, Coord. Chem. Rev.
119 (1992) 67.
[2] A. Togni, L.M. Venanzi, Angew. Chem., Int. Ed. Engl. 33 (1994) 497.
[3] F. Fache, E. Schulz, M.L. Tommasino, M. Lemaire, Chem. Rev. 100 (2000) 2159.
[4] S. Adsule, V. Barve, D. Chen, F. Ahmed, Q.P. Dou, S. Padhye, F.H. Sarkar, J. Med.
Chem. 49 (2006) 7242.
[5] M. Sebastian, V. Arun, P.P. Robinson, A.A. Varghese, R. Abraham, E. Suresh,
K.K.M. Yusuff, Polyhedron 29 (2010) 3014.
[6] S.A. Filimon, C.G. Hrib, S. Randoll, I. Neda, P.G. Jones, M. Tamm, Z. Anorg. Allg.
Chem. 636 (2010) 691.
[7] D.S. Raja, N.S.P. Bhuvanesh, K. Natarajan, Eur. J. Med. Chem. 46 (2011) 4584.
[8] D.S. Raja, N.S.P. Bhuvanesh, K. Natarajan, J. Biol. Inorg. Chem. 2011,
[9] D.S. Raja, N.S.P. Bhuvanesh, K. Natarajan, Inorg. Chem. 2011, doi:10.1021/
[10] N. Singh, B. Singh, K. Thapliyal, M.G.B. Drew, Inorg. Chim. Acta 363 (2010)
3589.
[11] S.V. Ley, A.W. Thomas, Angew. Chem. Int. Ed. 42 (2003) 5400.
[12] Z. Fei, D. Zhao, D. Pieraccini, W.H. Ang, T.J. Geldbach, R. Scopelliti, C. Chiappe,
P.J. Dyson, Organometallics 26 (2007) 1588.
3.5. Catalytic N-arylation of imidazole by Pd(II) complexes
One of the binuclear Pd(II) complexes, [(PPh3)2ClPd(L1)PdCl] has
been used as a catalyst in the N-arylation reaction of imidazole with
various aryl halides and the results are summarized in Table 6. The
N-arylated imidazole product was obtained in good yield (78–89%)
after stirring at 120 °C in DMAc for 24–28 h in the presence of cata-
lyst and a base, K2CO3. Since the leaving group ability of halogens
are in the order of I > Br > Cl > F, the aryl bromides react faster as
compared to the aryl chlorides (Table 6). The highest reactivity of
4-chloronitrobenzene (Table 6, entry 5) towards N-arylation is
attributed to the presence of strongest electron withdrawing group
(NO2) in the phenyl ring [32].
[13] A.V. Vorogushin, X. Huang, S.L. Buchwald, J. Am. Chem. Soc. 127 (2005) 8146.
[14] X. Huang, K.W. Anderson, D. Zim, L. Jiang, A. Klapars, S.L. Buchwald, J. Am.
Chem. Soc. 125 (2003) 6653.
4. Conclusion
[15] B.R. Rosen, J.C. Ruble, T.J. Beauchamp, A. Navarro, Org. Lett. 13 (2011) 2564.
[16] S. Ueda, M. Su, S.L. Buchwald, Angew. Chem. Int. Ed. 50 (2011) 8944.
[17] N. Yongpruksa, N.L. Calkins, M. Harmata, Chem. Commun. 47 (2011) 7665.
[18] S. Messaoudi, J.-D. Brion, M. Alami, Tetrahedron Lett. 52 (2011) 2687.
[19] M.K. Singh, A. Chandra, B. Singh, R.M. Singh, Tetrahedron Lett. 48 (2007)
5987.
[20] Z.C. Liu, B.D. Wang, Z.Y. Yang, Y. Li, D.D. Qin, T.R. Li, Eur. J. Med. Chem. 44
(2009) 4477.
[21] J.L. Burmester, F. Basolo, Inorg. Chem. 3 (1964) 1587.
[22] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori,
M. Camalli, J. Appl. Crystallogr. 27 (1994) 435.
[23] P.T. Beurskens, G. Admiral, G. Beurskens, W.P. Bosman, R. de Gelder, R. Israel,
J.M.M. Smits, The DIRDIF-99 Program System, Technical Report of the
Crystallography Laboratory, University of Nijmegen, The Netherlands, 1999.
[24] J.R. Carruthers, J.S. Rollett, P.W. Betteridge, D. Kinna, L. Pearce, A. Larsen, E.
Gabe, Chemical Crystallography Laboratory, Oxford, UK, 1999.
[25] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1984.
[26] L.P. Romm, A.A. Malkov, S.A. Lebedev, V.V. Levashova, T.M. Buslaeva, Russ. J.
Phys. Chem. A 85 (2011) 248.
Six new binuclear palladium(II) complexes with the general
formula [(PPh3)2ClPd(L)PdCl] have been synthesized by reacting
2-oxoquinoline-3-carbaldehyde or 2-oxo-1,2-dihydrobenzo[h]quin
oline-3-carbaldehyde Schiff base ligands with [PdCl2(PPh3)2].
Analytical, spectral (IR, UV–Vis, NMR) and X-ray diffraction studies
revealed that the ligand is coordinated to two Pd(II) ions with the
formation of NO2Cl and NP2Cl coordination spheres. Both the Pd(II)
ions adopt distorted square planar geometry. The complex,
[(PPh3)2ClPd(L1)PdCl] showed better catalytic activity in the
N-arylation reaction of imidazole.
Acknowledgments
Financial assistance received from the Council of Scientific and
Industrial Research, New Delhi, India [Grant Nos. 01(2216)/08/
EMR-II and 21(0745)/09/EMR-II], is gratefully acknowledged.
[27] M.M. Tamizh, K. Mereiter, K. Kirchner, B.R. Bhat, R. Karvembu, Polyhedron 28
(2009) 2157.