7098
S. Rajput et al. / Tetrahedron Letters 52 (2011) 7095–7098
6. (a) Magee, P. J.; Rowland, I. R. Br. J. Nutr. 2004, 91, 513–531; (b) Limer, J. L.;
Speirs, V. Breast Cancer Res. 2004, 6, 119–127; (c) Ren, M. Q.; Kuhn, G.; Wegner,
J.; Chen, J. Eur. J. Nutr. 2001, 40, 135–146.
7. (a) Black, D. StC.; Bowyer, M. C.; Ivory, A. J.; Jolliffe, K. A.; Kumar, N. Tetrahedron
1996, 52, 4687–4696; (b) Black, D. StC.; Kumar, N.; McConnell, D. B. Tetrahedron
1996, 52, 8925–8936; (c) Black, D. StC.; Ivory, A. J.; Kumar, N. Tetrahedron 1996,
52, 7003–7012; (d) Black, D. StC.; Bowyer, M. C.; Catalano, M. M.; Ivory, A. J.;
Keller, P. A.; Kumar, N.; Nugent, S. J. Tetrahedron 1994, 50, 10497–10508.
8. Pelter, A.; Foot, S. Synthesis 1976, 326.
one 10d and 53% yield of the dihydroxypyrroloquinolin-6-one 11d
being obtained upon treatment with 48% hydrobromic acid in gla-
cial acetic acid (Table 4, entry 9). In general, the dihydroxypyrrolo-
quinolin-6-ones 11 were found to be difficult to isolate and purify
due to their low stability and susceptibility to degradation.
In conclusion, 7,9-dimethoxypyrrolo[3,2,1-ij]quinolin-6-ones 5
were prepared in two steps from both indole and quinolin-4-one
starting materials. Demethylation of these 7,9-dimethoxypyrrol-
9. Bass, R. J. J. Chem. Soc., Chem. Commun. 1976, 2, 78–79.
10. Representative procedure for the synthesis of pyrrolo[3,2,1-ij]quinolin-6-ones
o[3,2,1-ij]quinolin-6-ones
1
was performed, with selective
1:
A mixture of 7-indolyldeoxybenzoin 6e (0.400 g, 0.88 mmol) and N,N-
C7-demethylation being achieved in the presence of cerium
trichloride and the dihydroxy analogues being obtained upon
treatment with aluminium trichloride.
dimethylformamide-dimethyl acetal (2 mL) in THF (2 mL) was heated in a
pressure tube at 160 °C for 24 h. The resulting solid was filtered and washed with
H2O to afford 1b as a yellow solid (0.347 g, 92%). Mp 306–307 °C (from CHCl3/
MeOH). Found: C, 65.04; H, 4.05; N, 2.96%. C25H18BrNO3 requires: C, 65.23; H,
3.94; N, 3.04%. 1H NMR (300 MHz, CDCl3): d 3.96 (s, 3H, OMe), 4.08 (s, 3H, OMe),
6.50 (s, 1H, H8), 7.23 (s, 1H, H2), 7.35–7.42 (m, 3H, ArH), 7.54 (s, 4H, ArH), 7.60 (d,
J = 8.7 Hz, 2H, ArH), 7.95 (s, 1H, H4). 13C NMR (75 MHz, CDCl3): d 55.6, 56.6, 91.5,
107.5, 107.9, 120.2, 121.3, 124.2, 127.5, 127.9, 129.0, 129.2, 130.5, 131.1, 132.4,
Acknowledgments
We thank the University of New South Wales and the Australian
Research Council for their financial support.
134.9, 136.8, 159.2, 162.1, 175.6. IR (Nujol):
mmax 1643, 1622, 1595, 1537, 1460,
1434, 1377, 1354, 1322, 1309, 1295, 1213, 1178, 1138, 1093, 1051, 1005, 807,
767 cmÀ1. UV (MeOH): kmax 206 nm ( 61121 cmÀ1 MÀ1), 259 (53618), 345
e
(20508), 368 (19641). MS (ESI): m/z 482, [M+Na]+ (35%).
References and notes
11. Crystallographic data for the structure of 1d reported in this paper have been
deposited with the Cambridge Crystallographic Data Centre as Supplementary
Publication No. CCDC 823849. X-ray crystal structures were obtained by Don
Craig, Crystallography Laboratory, UNSW Analytical Centre, Sydney, Australia.
12. (a) Wähälä, K.; Hase, T. A. Heterocycles 1989, 28, 183–186; (b) Martucci, C. P.;
Fishman, J. Pharmacol. Ther. 1993, 57, 237–257; (c) Constantinou, A. I.; Mehta,
R.; Husband, A. Eur. J. Cancer 2003, 1012–1018; (d) Baker, E. N.; Hubbard, R. E.
Prog. Biophys. Mol. Biol. 1984, 44, 97–179.
1. Black, D. StC.; Kumar, N. Org. Prep. Proceed. Int. 1990, 23, 67–92.
2. Black, D. StC.; Kumar, N.; Mitchell, P. S. R. J. Org. Chem. 2002, 67, 2464–2473.
3. Yudin, L. G.; Budylin, V. A.; Kost, A. N. Khim. Geterotsikl. Soedin. 1967, 4, 704–707.
4. Kato, T.; Niitsuma, T.; Maeda, K. Chem. Pharm. Bull. 1971, 19, 832.
5. Bass, R. J.; Koch, R. C.; Richards, H. C.; Thorpe, J. E. J. Agric. Food Chem. 1981, 29,
576–579.